Application System/400™ 5C41-0027-00

System Programmer’s Communications
Interface Guide

Version 2

System and Application Support

Take Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page vii. '

First Edition (May 1991)

This edition applies to the licensed program IBM Operating System/400 (Program 5738-SS1), Version 2 Release 1
Modification 0, and to all subsequent releases and modifications until otherwise indicated in new editions. Make
sure you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. Publications are not
stocked at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, you may
address your comments to:

Attn Department 245

IBM Corporation

3605 Highway 52 N
Rochester, MN 55901-7899

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you or restricting your use of it.

© Copyright International Business Machines Corporation 1991. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices vii
Programming Interfaces vii
About This Guide ix
Who Should Use This Guide ix

Part 1. User-Defined Communications

Chapter 1. Introduction to User-Defined Communications 1-1
Overview 1-1
User-Defined Communications Callable Routines 1-2
Input/Output Buffers and Descriptors 1-2
Data Queue 1-2
Important Concepts 1-3
Relationship to Communications Standards 1-4
LAN Considerations e e e, 1-6
X.25 Considerations S 1-7
Chapter 2. User-Defined Communications Support APIs 2-1
QOLELINK . o, 2-3
Parameter List 2-3
Description of Function 2-5
Return and Reason Codes 2-6
QOLDLINK o 2-8
Parameter List 2-8
Description of Function, 2-8
Return and Reason Codes 2-9
QOLSETF . . . s, 2-10
Parameter List 2-10
Description of Function 2-10
General Filter Rules 2-15
Return and Reason Codes e 2-15
QOLSEND, 2-17
Parameter List 2-17
Description of Function 2-20
LAN Output Operations 2-20
X.25 SVC and PVC Qutput Operations 2-22
Return and Reason Codes, 2-35
QOLRECVY e 2-40
Parameter List 2-40
Description of Function 2-44
LAN Input Operations 2-44
X.25 S8VC and PVC Input Operations 2-46
Return and Reason Codes 2-52
QOLQLIND . . 2-57
Parameter List 2-57
Description of Function 2-57
Return and Reason Codes 2-60
QOLTIMER 2-62
Parameter List 2-62
Description of Function 2-63

© Copyright IBM Corp. 1991 ifi

Return and Reason Codes e 2-64

Chapter 3. Programming Design Considerations 3-1
JODS e 3-1
Application Program Feedback 3-5
Synchronous and Asynchronous Operations 3-5
Programming Languages 3-5
Starting and Ending Communicationso 0oL 3-6
Programming Considerations for X.25 Applications 3-6
X.25 Packet Types Supported 3-6
onnections L e e 3-8
Switched Virtual Circuit (SVC) Connectivity 3-10
Permanent Virtual Circuit (PVC) Connectivity 3-11
Sending and Receiving Data Packets 3-12
Using Connection Identifiers, 3-14
AS/400 System X.25 Call Control 3-29
Performance Considerations 3-31
Programming Considerations for LAN Applications 3-32
LAN Frames Supported 3-32
Configuration 3-33
Inbound Routing Information 3-34
End-to-End Connectivity 3-34
Sending and Receiving Data 0 0oL 3-34
Ethernet to Token-Ring Conversion and Routing 3-35
Performance Considerations 3-35
Data Queue Considerations oo 3-36
User Space Considerations 3-38
Chapter 4. Application Programming Examples 4-1
X.250verview e 4-1
User-Defined Communications Support Overview 4-1
C/400 Compiler Listings 4-3
Chapter 5. Application Debugging 5-1
System Services and Tools oo 5-1
Program Debug 5-1
Work with Communications Status, 5-1
Display Job Log e 5-1
Display Connection Status L. 5-1
Display Inbound Routing Data 5-2
Work with Communications Trace 5-2
Work with Error Log e 5-2
Dump System Object to View User Spaces 5-3
Error Codes 5-11
LANError Codes i 5-11
X.25Error Codes e 5-12
Common Errors e e e 5-15
Chapter 6. Configuration and Additional Information 6-1
Configuring User-Defined Communications Support 6-1
LinK . e e e 6-1
Data Queue 6-2
Data Queue Entries 6-2
General Format 6-2
Enable-Complete Entry e 6-3

iv As/400 System Programmer’s Communications Interface Guide

Disable-Complete Entryo 6-3

Permanent-Link-Failure Entryo Lo 6-4
Incoming-Data Entry 6-4
Timer-Expired Entry 6-5

Part 2. Virtual Terminal Application Programming Interfaces

Chapter 7. Introduction to Virtual Terminal APIs 7-1
Implementation of Distributed 5250 Emulation Model 7-1
Chapter 8. Getting ready for usingthe VTAPIs 8-1
Step 1 - Setting the Number of Automatically Created Virtual Terminals . . 8-1

Security Considerations e 8-2
Step 2 - Setting the Limit Security Officer (QLMTSECOFR) Value 8-2
Step 3 - Creating User Profiles 8-3
Creating Your Own Virtual Controllers and Devices 8-3
Developing Server and Client Programs 8-4
Chapter 9. Before Using VT APIs 9-1
Work Station Types e 9-1
Virtual Terminal Data 9-1
Data Queues e e 9-1
AS/400 Job Information L 9-2
AS/400 Subsystem Information 0. 9-2
Chapter 10. Virtual Terminal APIs e 10-1
Open Virtual Terminal Path API (QTVOPNVT) 10-1

Supported Work Station Types and Models 10-3
Read from Virtual Terminal API (QTVRDVT) 10-4

Read Operation Codes 10-6
Write to Virtual Terminal API (QTVWRTVT) 10-8

Write Operation Codes e 10-9
Send Request for 0S/400 Function API (QTVSNDRQ) 10-10
Close Virtual Terminal Path APl (QTVCLOVT) 10-11
VT APl Error Reporting o 10-11

Error Code Parameter 10-11
Chapter 11. VT APIs Run-Time Example 11-1

Part 3. Appendixes

Appendix A. Additional APIs L. A-1
Appendix B. 5250 Data Stream and Keystroking Enhancements B-1
Changes to the 5250 Functions Reference Manual B-1
Enhancements to 5250 Data Stream Commands and Orders B-1
New 5250 Data Stream Commands and Orders B-2
New 5250 Keystroke Processing B-7

Contents V

vi

Bibliography
AS/400 Manuals

AS/400 System Programmer’s Communications Interface Guide

Notices

References in this publication to IBM products, programs, or services do not
imply that IBM intends to make these available in all countries in which IBM
operates.

Any reference to an IBM licensed program or other IBM product in this publica-
tion is not intended to state or imply that only IBM’s program or other product
may be used. ‘

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The following terms, denoted by an asterisk (*) in this publication, are trade-
marks of the IBM Corporation in the United States and/or other countries:

Application System/400 AS/400 C/400

COBOL/400 IBM Operating System/400
08/2 08/400 PS/2

RPG/400 400

This publication could contain technical inaccuracies or typographical errors.
This guide may refer to products that are announced but are not yet available.

This publication contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include
the names of individuals, companies, brands, and products. All of these names
are fictitious and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

This guide contains small programs that are furnished by IBM as simple exam-
ples to provide an illustration. These examples have not been thoroughly tested
under all conditions, IBM, therefore, cannot guarantee or imply reliability, ser-
viceability, or function of these programs. All programs contained herein are
provided to you “AS IS”. THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

Programming Interfaces

This System Programmer’s Communications Interface Guide is intended for
system programmers who will be doing specialized communications program-
ming on the AS/400 system. It primarily contains general-use programming
interfaces, which allow the customer to write programs that use the services of
the OS/400 (Program 5738-SS1), Version 2 Release 1 Modification O.

© Copyright IBM Corp. 1991 vii

AS/400 System Programmer’s Communications Interface Guide

About This Guide

This guide describes the application program interfaces (APIls) for user-defined
communications and other communications-oriented APls on the AS/400 system.

Part 1 contains the information needed to write user-defined communications
applications, programming examples, and debugging information.

Part 2 contains the information needed to use the Virtual Terminal (VT) APIs,
which allows an AS/400 application program to interact with an AS/400 system
that is performing work station input/output (1/0).

Who Should Use This Guide

This guide is intended for system programmers who will be doing specialized
communications programming on the AS/400 system. Those who configure user-
defined communications and programmers who write to the user-defined com-
munications or VT APIs should use this guide.

You should be familiar with general communications concepts. AS/400 commu-
nications concepts are covered in the System Concepts, GC41-9802, manual. In
addition, specific communications topics are discussed in the online index
search. For more information on basic communications, you can also refer to
the Discover/ IBM AS/400 course in the communications module. The Discover/
IBM AS/400 course may be ordered separately. If you are interested in IBM cus-
tomer education, contact your IBM marketing representative regarding customer
education classes held at IBM education centers.

You should also know how to use the AS/400 menus and commands and how to
write applications on the AS/400 system.

You should be familiar with CCITT X.25, IEEE 802.2, IEEE 802.3, IEEE 802.5, or
Ethernet Version 2 protocols.

Refer to the “Bibliography” for a list of manuals related to the information in this
guide.

© Copyright IBM Corp. 1991 ix

X AS/400 System Programmer’s Communications Interface Guide

Part 1. User-Defined Communications

© Copyright IBM Corp. 1991

AS/400 System Programmer’s Communications Interface Guide

Chapter 1. Introduction to User-Defined Communications

User-defined communications is a set of application program interfaces (APIs)
that are part of Operating System/400* (0S/400*). These callable programs allow
customers to write their own communications protocol stacks above the AS/400*
data link and physical layer support. The term, user-defined communications,
will be used to describe this new communications protocol support.

This publication defines user-defined communications, and describes how to
write protocols using the APIs. In addition, Chapter 4, “Application Program-
ming Examples” describes two C language program examples that illustrate the
use of the various APIs while performing a simple file transfer between two
systems attached to an X.25 packet switched network.

Overview

The user-defined communications APIs are callable routines that allow an appli-
cation program to send and receive data, and do specialized functions such as
setting timers.

Figure 1-1 shows an overview of the user-defined communications support.

User-Defined Communications Application Program

Input/Output Buffers Data Queue

User-Defined Communications Support

Token—Ring Ethernet X.25
Communications Communications Communications
Support Support Support
To Token—Ring Network To Ethernet Network To X.25 Network

Figure 1-1. User-Defined Communications Support

© Copyright IBM Corp. 1991

11

As Figure 1-1 on page 1-1 indicates, a user-defined communications application
program needs to coexist with the following:

» user-defined communications support
« input/output buffers and descriptors
e a data queue

User-Defined Communications Callable Routines

Callable routines are provided that allow a user-defined communications appli-
cation program to start, perform, and end communications, and perform special-
ized functions such as setting timers. These routines are listed below and are
discussed in detail in Chapter 2, “User-Defined Communications Support APls.”

e QOLELINK — start communications

e QOLDLINK — end communications

» QOLSETF — provide routing information for inbound data
e QOLSEND — send data

e QOLRECV — receive data

* QOLQLIND — retrieve line description information

» QOLTIMER — set or cancel a timer

Input/Output Buffers and Descriptors

Data Queue

The input/output buffers and descriptors are user space objects (*USRSPC) that
contain and describe the data a user-defined communications application
program is sending or receiving. There are separate buffers and descriptors for
input and output.

When a user-defined communications application program wishes to send data,
it fills the output buffer with data and provides a description of that data in the
output buffer descriptor. Similarly, when a user-defined communications applica-
tion program receives data, the user-defined communications support fills the
input buffer with data and provides a description of that data in the input buffer
descriptor.

Callable routines are provided that allow a user-defined communications appli-
cation program to manipulate the data in the user spaces. Some of these rou-
tines are listed below.

*» QUSPTRUS — get a pointer to the user space
» QUSCHGUS — change contents of the user space
* QUSRTVUS — retrieve contents of the user space

See the System Programmer’s Interface Reference for more information on the
user space APIs.

The data queue is used by the user-defined communications support to inform a
user-defined communications application- program of some action to take or of
an activity that has been completed.

Callable routines are provided that allow a user-defined communications appli-
cation program to manipulate the data queue. Some of these routines are listed
below.

« QSNDDTAQ — send an entry to the daté queue
« QRCVDTAQ — receive an entry from the data queue

1-2 AS/400 System Programmer’s Communications Interface Guide

* QCLRDTAQ — clear all entries from the data queue

See the CL Programmer’s Guide for more information on the data queue APIs.

Important Concepts

Listed below are concepts that are important in understanding the information
contained in this guide.

Link: The logical path between a user-defined communications application
program and a communications line. A link is made up of the following commu-
nications objects:

* an X.25, token-ring, or Ethernet line description
* a network controller description
* a network device description of type *USRDFN

Communications handle: The name a user-defined communications application
program assigns and uses to refer to a link.

Enable: The process of setting up and activating a link for input and outpdt on a
communications line. ‘

Disable: The process of deactivating a link so input and output is no longer pos-
sible on a communications line.

Filter: The technique used to route inbound data to a link that is enabled by a
user-defined communications application program.

Connection: The logical communication path from one computer system to
another. For example, a switched virtual circuit (SVC) connection on an X.25
network.

Connection identifier: A local identifier (ID) that a computer system uses to dis-
tinguish one connection from another. When using the user-defined communica-
tions support on the AS/400 system, a connection ID is made up of a user
connection end point ID and a provider connection end point ID.

User connection end point ID (UCEP ID): The portion of the connection ID that

the user-defined communications application program uses to identify the con-

nection. For example, data received by the user-defined communications appli-
cation program will be on the UCEP ID portion of the connection ID.

Provider connection end point ID (PCEP ID): The portion of the connection ID
that the user-defined communications support uses to identify the connection.
For example, data sent by the user-defined communications application program
will be on the PCEP ID portion of the connection ID.

Connection-oriented service: A method of operation where a connection to the
remote computer system must first be established before data can be sent to it
or received from it. User-defined communications support provides connection-
oriented service over X.25 networks only.

Connectionless service: A method of operation Where data can be sent to and
received from the remote computer system without establishing a connection to
it. User-defined communications support provides connectionless service over

Chapter 1. Introduction to User-Defined Communications 1-3

token-ring and Ethernet networks only. To LANs, connectionless service is also
known as unacknowledged service.

Relationship to Communications Standards

Figure 1-2 shows the structure of advanced program-to-program communica-
tions (APPC) on the AS/400 system and its relationship to the International
Standards Organization (ISO) protocol model. Note that only the application
layer above the APPC protocol code is available for definition. The APPC func-
tional equivalents of the 1SO presentation, session, networking, transport, data
link, and physical layers are performed by OS/400 or licensed internal code, and
you may not replace or change them. Contrast this with Figure 1-3 on page 1-5
which shows how much more of the protocol is defined by the user-defined com-
munications application than by the APPC application.

AS/400 APPC International Standards
Protocol Organization Model (IS0)
APPC Applications Application
Presentation Presentation
Services
Data Flow Session
Control
Transmission Transport
Control
Path Control Network
Data Link Control Data Link
Physical Control Physical
(a1l layers except appli—
cation are IBM-supplied
licensed internal code)

Figure 1-2. AS/400 APPC versus ISO Mode/

Figure 1-3 on page 1-5 shows the new structure for user-defined communica-
tions and its relationship to the International Standards Organization (ISO) pro-
tocol model. Note that the available AS/400 data links and physical layers limit
user-defined communications to run over LAN (token-ring or Ethernet) or X.25
links, but the portion of the protocol above the data link layer is completely open
to the user-defined communications application. In addition, these same X.25
and LAN links may be shared between the user-defined communications applica-
tion and other AS/400 communications protocols that support X.25 and LAN lines.

1-4 AS/400 System Programmer’s Communications Interface Guide

Examples include Systems Network Architecture (SNA), asynchronous commu-
nications, Transmission Control Protocol/Internet Protocol (TCP/IP), and Open
Systems Interconnection (OSl).

AS/400 User—Defined International Standards

Communications Organization Model (ISO)
Application

User—defined

communications

application Presentation

This structure
is open to the
application Session
architect. The
design will

dictate how the

protocol is Transport
organized.
Network
X.25, LAN datalink Data Link
V.24, 802.3, ... Physical

Figure 1-3. AS/400 User-defined versus ISO Model

Protocols that run over local area networks or X.25 networks may be written
completely in high-level languages such as C/400*, COBOL/400*, or RPG/400™.
Protocols that are currently running on other systems may be written to run on
the AS/400 system. It is now possible for a customer or an IBM* Business
Partner to write both non-SNA LAN or X.25 packet layer protocols on the AS/400
system.

Configuration instructions also need to be supplied with the user-defined com-
munications application. User-defined communications support simply opens a
pathway to the system data links. It is up to the protocol developer to supply
any configuration instructions that are in addition to the data link or physical
layer definition. Data link and physical layer definitions are defined when the
user performs a Create Line Description (tol;en-ring) (CRTLINTRN), Create Line
Description (Ethernet) (CRTLINETH), or Create Line Description (X.25)
(CRTLINX25).

Table 1-1 on page 1-6 outlines the difference between standard AS/400 commu-

nications configuration and user-defined communications configuration, such as
the AS/400 APPC protocol.

Chapter 1. Introduction to User-Defined Communications 1-5

Table 1-1. User-defined Communications Configuration
Object APPC Communications ‘ User-Defined Communications
* Line SDLC, LAN, X.25 lines. Contains LAN, X.25 lines. Same as APPC

Description - local port information for AS/400 except some of the information
communication IOP (hardware does not apply to user-defined
address, maximum frame size, communications.
exchange identifier (XID), local
recovery information, ...).

Controller APPC, host controllers. Network controller. Pathway into

Description Describes remote system and network. Only one specific
parameters must match the parameter - X.25 time-out value.
remote hardware (hardware
address, XID, ...).

Device APPC device. Describes remote Network device. Only describes

Description logical unit (LU), and parameters the communications method or
must match partner LU (remote type (for example, TCP/IP, OSI|, or
location name, local location user-defined communications).
name, ...).

Mode Required. Not availabie

Description ’

and

Class-of-

Service

(COS)

This table shows that although an APPC network would require one APPC con-
troller description to describe each remote system in the network, user-defined
communications would only require one network controller for communications
with an entire network of remote systems. This allows user-defined communica-
tions application writers to easily manage their networks. However, system-
specific configuration information must be part of the user-defined
communication application itself and is not supplied by IBM.

Although the configuration objects are different from the standard objects for
AS/400 communications protocols, LAN and X.25 lines may be shared between
user-defined communications and any other protocols that support those same
line types. For example, APPC may run over a token-ring line and use the ‘04X
Service Access Point (SAP). TCP/IP might run at the same time using the "AA’X
SAP. A user-defined communications application might be written to use the
22X SAP, and run at the same time as the first two. All three protocols may be
active at the same time across the same physical media.

LAN Considerations

Three LAN types are supported: token-ring (IEEE 802.5), Ethernet (IEEE 802.3),
and Ethernet Version 2. '

The user-defined communications application has access to Class I, Type 1
unnumbered information (Ul) frames through the user-defined communications
application. This connectionless service is commonly referred to as datagram
support where protocol data units are exchanged between end points without
establishing a data link connection first.

The Class |, Type 1 operations, Test and XID frames, are not supported in user-
defined communications. Any XID or Test frames received by the AS/400 phys-

1-6 As/400 System Programmer’s Communications Interface Guide

ical layer are processed by the IOP and never reach the user-defined
communications application.

LAN frames are routed by filtering the incoming data based on the inbound
routing data that is defined by the user-defined communications application. The
filters are hierarchical and are set up by the user-defined communications appli-
cation before communications is started.

The possible settings for LAN inbound routing data (filters) are shown below
from least selective to most selective.

* Destination Service Access Point (DSAP)
* DSAP, Source Service Access Point (SSAP), and optional frame type
* DSAP, SSAP, optional frame type, and adapter address

Because user-defined communications does not allow applications to define the

data link and physical layers, the entire token-ring or Ethernet frame is not avail-
able to applications. The following fields are the parts of the LAN frame that are
available to the user-defined communications support:

* DSAP

e SSAP

» Destination Address (DA)

* Routing Information field (RI)
* Priority control '

* Access control

e Data

X.25 Considerations

X.25 user-defined communications support includes access to both permanent
virtual circuits (PVCs) and switched virtual circuits (SVCs).

Over X.25 networks, the user-defined communications application may initiate
and accept X.25 calls, send and receive data, and reset and clear connections.
For additional information on X.25 support, refer to “Programming Consider-
ations for X.25 Applications” on page 3-6.

X.25 packets are routed by filtering the incoming call request based on the
inbound routing data that is defined by the user-defined communications applica-
tion. The filters are hierarchical and are set up by the user-defined communica-
tions application before communications is started.

The possible settings for X.25 inbound routing data (filters) are shown below
from least selective to most selective.

* Protocol identifier (PID)
* PID, and calling Data Terminal Equipment (DTE) address

Chapter 1. Introduction to User-Defined Communications 1-7

1-8 AS/400 System Programmer’s Communications Interface Guide

Chapter 2. User-Defined Communications Support APIs

User-defined communications support is made up of seven callable application
program interfaces (APIs) that provide services for the user-defined communica-
tions application program.

All parameters must be passed to each API by reference (for example, by an
address to the information). An input parameter is used to pass information to
an APl. An output parameter is used to receive information from an API.

When control returns from an API, the status of the operation will be located in
the return code and reason code output parameters. Return codes are 4-byte
numbers that determine the recovery action to take. They are grouped into the
following categories:

* 00 — operation successful, no recovery needed

¢ 80 — nonrecoverable error, need to disable link

* 81 — nonrecoverable error, do not need to disable link
* 82 — recoverable error, enable link failed

* 83 — recoverable error, see recovery actions

Reason codes are 4-byte numbers that determine what error occurred. They are
grouped into the following categories:

¢ 0000 — no error

* 1xxx — parameter validation error

* 20xx — line, controller, or device description error

e 22xx — data queue error

* 24xx — buffer or buffer descriptor error

¢ 30xx — link state error

e 32xx — connection state error

e 34xx — timer state error

* 4xxx — communication error

* 8xxx — application error

* 9998 — a condition in which an Authorized Program Analysis Report (APAR)
may be submitted

Note: ‘x’ represents any decimal number. For example, 1xxx represents the
range 1000 - 1999.

In addition to parameters, some of the APIs also use input/output buffers and
descriptors 1o receive information from, and pass information to, the user-
defined communications application program. For example, when a user-defined
communications application program sends data, it fills the output buffer with
data and provides a description of that data in the output buffer descriptor. Simi-
larly, when a user-defined communications application program receives data,
the user-defined communications support fills the input buffer with data and pro-
vides a description of that data in the input buffer descriptor.

The input/output buffers and descriptors are user space objects (*USRSPC) that
are created by user-defined communications support when a link is enabled and
deleted by user-defined communications support when that link is disabled. For
each link, there is an input buffer, input buffer descriptor, output buffer, and
~output buffer descriptor. The structure of the input buffer and output buffer are
the same. Likewise, the structure of the input buffer descriptor and output buffer

© Copyright IBM Corp. 1991 2-1

descriptor are the same. Figure 2-1 shows the structure of a buffer and the cor-
responding buffer descriptor.

Buffer Buffer Descriptor
Descriptor Element 1
Data Unit 1
Descriptor Element 2
Data Unit 2
Descriptor Element n
Data Unit n

Figure 2-1. Structure of Buffer and Buffer Descriptor

The buffer is divided into equally sized, contiguous sections called data units
(DUs). A DU in the output buffer contains data to be sent on the network. A DU
in the input buffer contains data received off the network. The size of each DU,
as well as the number of DUs created, will be returned from the QOLELINK
program when the link is enabled.

The buffer descriptor is divided into equally sized, contiguous sections called
descriptor elements. Each descriptor element describes the data in the corre-
sponding DU of the buffer. For example, descriptor element 1 describes the data
in data unit 1 of the buffer. The size of each descriptor element is 32 bytes.

Uses of the input/output buffers and descriptors, as well as the formats of the
DUs and descriptor elements, are discussed later in this chapter.

2-2 As/400 System Programmer’s Communications Interface Guide

QOLELINK

Parameter List

CALL QOLELINK(return code,

reason code,

data unit size,

data units created,

LAN user data size,

X.25 user data size,
input buffer,

input buffer descriptor,
output buffer,

output buffer descriptor,
key Tength,

key value,

queue name,

line description,
communications handle)

Table 2-1 (Page 1

of 3). QOLELINK Parameter List

Parameter

Use

Type

Description

return code

output

BINARY(4)

Specifies the recovery action to take. See “Return and
Reason Codes” on page 2-6.

reason code

output

BINARY(4)

Specifies the error that occurred. See “Return and Reason
Codes” on page 2-6.

data unit size

output

BINARY(4)

Specifies the total number of bytes allocated for each data
unit in the input and output buffers. For token-ring links,
this includes user data (LAN user data size parameter),
logical link control (LLC) information, and optional routing
information. For Ethernet links, this includes user data
(LAN user data size parameter) and LLC information. For
X.25 links, this includes user data (X.25 user data size
parameter).

data units
created

output

BINARY(4)

Specifies the number of data units created for the input
buffer and the output buffer. This parameter also specifies
the number of elements created for the input buffer
descriptor and the output buffer descriptor. Currently, 8 is
the only possible value for this parameter. However, the
user-defined communications application program should
be written to avoid having to recompile should this value
ever change.

LAN user data
size

output

BINARY(4)

Specifies the number of bytes allocated for token-ring or
Ethernet user data in each data unit of the input and output
buffers, not including logical link control (LLC) information
and optional routing information.

The content of this parameter is only valid when enabling a
token-ring or Ethernet link.

Note: The maximum amount of token-ring or Ethernet user
data that can be sent or received in each data unit is
determined on a service access point basis in the line
description and by the 1502 byte maximum for Ethernet
Version 2 frames, and may be less than LAN user data
size. See “QOLQLIND” on page 2-57 for more information.

Chapter 2. User-Defined Communications Support APIs 2-3

Table 2-1 (Page 2

of 3). QOLELINK Parameter List

Parameter

Use

Type

Description

X.25 user data
size

input

BINARY(4)

Specifies the number of bytes allocated for X.25 user data
in each data unit of the input and output buffers. This is
equal to the maximum amount of X.25 user data that can
be sent or received in each data unit. Any value between
512 and 4096 may be used.

The content of this parameter is only valid when enabling
an X.25 link.

=4

buffer

Specifies the name and library of the input buffer that the
QOLELINK program will create for this link. The first 10
characters specify the name of the input buffer and the
second 10 characters specify the name of an existing
library that the input buffer will be created in. Both entries
are left-justified. The special values of *LIBL and *CURLIB
may be used for the library name.

Note: A user space object with the same name as the
input buffer must not already exist in the specified library.

input buffer
descriptor

input

CHAR(20)

Specifies the name and library of the input buffer
descriptor that the QOLELINK program will create for this
link. The first 10 characters specify the hame of the input
buffer descriptor and the second 10 characters specify the
name of an existing library that the input buffer descriptor
will be created in. Both entries are left-justified. The
special values of *LIBL and *CURLIB may be used for the
library name.

Note: A user space object with the same name as the
input buffer descriptor must not already exist in the speci-
fied library.

output buffer

input

CHAR(20)

Specifies the name and library of the output buffer that the
QOLELINK program will create for this link. The first 10
characters specify the name of the output buffer and the
second 10 characters specify the name of an existing
library that the output buffer will be created in. Both
entries are left-justified. The special values of *LIBL and
*CURLIB may be used for the library name.

Note: A user space object with the same name as the
output buffer must not already exist in the specified library.

output buffer
descriptor

input

CHAR(20)

Specifies the name and library of the output buffer
descriptor that the QOLELINK program will create for this
link. The first 10 characters specify the name of the output
buffer descriptor and the second 10 characters specify the
name of an existing library that the output buffer descriptor
will be created in. Both entries are left-justified. The
special values of *LIBL and *CURLIB may be used for the
library name.

Note: A user space object with the same name as the
output buffer descriptor must not already exist in the speci-
fied library.

key length

input

BINARY(4)

Specifies the key length when using a keyed data queue.
Any value between 0 and 256 may be used, where 0 indi-
cates the data queue is not keyed.

key value

input

CHAR(256)

Specifies the key value (left justified) when using a keyed
data queue.

2-4 AS/400 System Programmer’s Communications Interface Guide

Table 2-1 (Page 3

of 3). QOLELINK Parameter List

Parameter

Use Type Description

queue name

input CHAR(20) Specifies the name and library of the data queue where the
enable-complete, disable-complete, permanent-link-failure,
and incoming-data entries for this link will be sent. See
“Data Queue Entries” on page 6-2 for more information on
these data queue entries. The first 10 characters specify
the name of an existing data queue and the second 10
characters specify the library in which the data queue is
located. Both entries are left-justified. The special values
of *LIBL and *CURLIB may be used for the library name.

line description

input CHAR(10) Specifies the name of the line description that describes
the communications line the link being enabled will use.
An existing token-ring, Ethernet, or X.25 line description
must be used.

communications
handle

input CHAR(10) Specifies the name assigned to the link being enabled.
Any name complying with system object naming con-
ventions may be used.

Description of Function

The QOLELINK program is called by a user-defined communications application
program to enable a link for input/output on a communications line. The com-
munications line, described by the line description parameter, must be a token-
ring, Ethernet, or X.25 line. The link being enabled can only be accessed within
the job in which the QOLELINK program was called.

Before calling the QOLELINK program to enable a link, the following objects
must be configured.

* a token-ring, Ethernet, or X.25 line description
* a data queue

See “Configuring User-Defined Communications Support” on page 6-1 for more
information on configuration.

The QOLELINK program will create the input/output buffers and buffer descrip-
tors that will be used for the link being enabled. The user spaces are created
with user authority of *PUBLIC and object authority of *EXCLUDE. The user
profile of the job calling QOLELINK is assigned *ALL object authority. The
network controlier description and network device description associated with
the link being enabled will also be created if necessary. In addition, the line
description, network controller description, and network device description will

be varied on if necessary.

When the QOLELINK program returns, the return and reason codes should be
examined to determine the status of the link. A successful return and reason
code (both zero) indicates the link is being enabled and an enable-complete
entry will be sent to the data queue specified on the call to QOLELINK when the
enable operation completes. See “Enable-Complete Entry” on page 6-3 for more
information on the enable-complete entry. An unsuccessful return and reason
code indicates the link could not be enabled and the enable-complete entry will
not be sent to the data queue. The following section provides more information
on QOLELINK return and reason codes. '

Chapter 2. User-Defined Communications Support APIs 2-5

Return and Reason Codes

Table 2-2 (Page 1 of 2). Return and Reason Codes for QOLELINK

another link that is enabled in this job.

Return /

Reason

Code Meaning Recovery

0/0 Operation successful, link enabling. Wait to receive the enable-complete entry

from the data queue before doing input/output
on this link.

81/9999 Internal system error detected. Escape See messages in the job log for further infor-
message CPF91F0 will be sent to the user- mation. Then, report the problem using the
defined communications application program ANZPRB command.
when this return and reason code is received.

82/1000 User data size not valid for X.25 link. Correct the X.25 user data size parameter.

Then, try the request again.

82/1001 Key length not valid. Correct the key length parameter. Then, try

the request again.

82/1002 Queue name not valid. Correct the queue name parameter. Then, try

the request again.

82/1003 Communications handle not valid. Correct the communications handle param-

eter. Then, try the request again.

82/2000 Line description not configured for token-ring, Correct the line description parameter. Then,
Ethernet, or X.25. try the request again.

82/2001 Line description, network controller See messages in the job log indicating the
description, or network device description not affected object and recommended recovery.
in a valid state. Do the recovery, and try the request again.

82/2002 Not authorized to the line description or See messages in the job log indicating the
network controller description. affected object and get authorization to it.

Then, try the request again.

82/2003 Could not allocate the network device Try the request again. If the problem con-
description. tinues, report the problem using the ANZPRB

command.

82/2004 Could not create the network controller See messages in the job log indicating the
description or network device description. affected object and recommended recovery.

: Do the recovery, and try the request again.

82/2005 Could not vary on the line description, network See messages in the job log indicating the
controller description, or hetwork device affected object and recommended recovery.
description. Do the recovery, and try the request again.

82/2006 Line description not found. Correct the line description parameter. Then,

try the request again.

82/2007 Line description damaged. Delete and recreate the line description.

Then, try the request again.

82/2400 An error occurred while creating the input See messages in the job log indicating the
buffer, input buffer descriptor, output buffer, or affected object and recommended recovery.
output buffer descriptor. Do the recovery, and try the request again.

82/3000 Communications handle already assigned to Either disable the link that was assigned this

communications handle, or correct the com-
munications handle parameter so it does not
specify a communications handle that is
already assigned to a link enabled in this job.
Then, try the request again.

2-6 As/400 System Programmer’s Communications Interface Guide

Table 2-2 (Page 2 of 2). Return and Reason Codes for QOLELINK

Return /

Reason :

Code Meaning Recovery

82/3005 Line description already in use by another link Disable the link that is using this line

that is enabled in this job.

description. Then, try the request again.

Chapter 2. User-Defined Communications Support APIs

2-7

QOLDLINK

CALL QOLDLINK(return code,

reason code,
communications handle,
vary option)

Parameter List

Table 2-3. QOLDLINK Parameter List

Parameter Use

Type

Description

return code output

BINARY(4)

Specifies the recovery action to take. See “Return and
Reason Codes” on page 2-9.

reason code output

BINARY(4)

Specifies the error that occurred. See “Return and Reason
Codes” on page 2-9. :

communications input
handle

CHAR(10)

Specifies the name of the link to disable. The special value
of *ALL’ (left-justified and padded on the right with spaces)
may be used to disable all links currently enabled in the
job that the user-defined communications application
program is running in.

vary option input

CHAR(1)

Specifies the vary option for the network device description
associated with each link being disabled. The valid values
are as follows:

X'00’ Do not vary off the network device description.

X001 Vary off the network device description.

Description of Function

The QOLDLINK program is called by a user-defined communications application
program to disable one or all links that are currently enabled in the job in which
the user-defined communications application program is running. When a link is
disabled, all system resources used by that link are released, the input/output
buffers and descriptors for that link are deleted, and input/output on that link is
no longer possible.

In addition to a user-defined communications application program explicitly disa-
bling a link by calling the QOLDLINK program, user-defined communications
support will implicitly disable a link in the following cases:

* when the network device associated with an enabled link is varied off from
the job in which it was enabled

e when a job ends in which one or more links were enabled

* when the user-defined communications application program that enabled the
link ends abnormally

* when the Reclaim Resource (RCLRSC) command is used

For each link that is successfully disabled, either explicitly or implicitly, the
disable-complete entry will be sent to the data queue that was specified on the
call to the QOLELINK program when the link was enabled. See “Disable-
Complete Entry” on page 6-3 for the format of the disable-complete entry.

2-8 AS/400 System Programmer’s Communications Interface Guide

Return and Reason Codes

Table 2-4. Return and Reason Codes for QOLDLINK

Return /

Reason

Code Meaning Recovery

0/0 Operation successful. Continue processing.

83/1004 Vary option not valid. Correct the vary option parameter. Then, try
the request again.

83/3001 Link not enabled. Correct the communications handle param-

eter. Then, try the request again.

Chapter 2. User-Defined Communications Support APls

2-9

QOLSETF

Parameter List

CALL QOLSETF(return code,
reason code,
error offset,
communications handle)

Table 2-5. QOLSETF Parameter List

Parameter

Use Type Description

return code

output BINARY(4) Specifies the recovery action to take. See “Return and

Reason Codes” on page 2-15.

reason code

output BINARY(4) Specifies the error that occurred. See “Return and Reason

Codes” on page 2-15.

error offset

output BINARY(4) Specifies the offset from the top of the output buffer to the

incorrect filter header data or to the incorrect filter in the
filter list.

The content of this parameter is only valid for 83/1999 and
83/3003 return/reason codes.

communications
handle

input CHAR(10) Specifies the name of the link on which to perform the filter

operation.

Description of Function

The QOLSETF program is called by a user-defined communications application
program to activate and/or deactivate one or more filters for a link that is cur-
rently enabled in the job in which the user-defined communications application
program is running. The required filter information must be provided by the
user-defined communications application program in the output buffer that was
created when the link was enabled. The output buffer descriptor is not used.
See “Format of Filter Information” on page 2-11 for details on the format of the
filter information in the output buffer.

Filters contain inbound routing information that user-defined communications
support uses to route incoming data to a link that is enabled by a user-defined
communications application program. The incoming data that is routed depends
on the type of communications line the link is using. On an X.25 communications
line, the incoming data is an incoming switched virtual circuit (SVC) call. On a
token-ring or Ethernet communications line, the incoming data is the actual data

frame.

How incoming data is routed to a link is determined by the type of filters acti-
vated for that link'. For links using a token-ring or Ethernet communications line,
there are three types of filters. They are listed below from most to least restric-
tive:

» destination service access point (DSAP), source service access point (SSAP),
nntinnal frama tuna and candina adantar nddvaca
VipUwviial nanic Ly po, aiiu oTiiuilly auapiti auuicoo

1 All active filters for a link must be of the same type.

2-10 AS/400 System Programmer’s Communications Interface Guide

* DSAP, SSAP, and optional frame type
e DSAP

For links using an X.25 communications line, there are two types of filters. They
are listed below from most to least restrictive:

* Protocol identifier (PID) and calling data terminal equipment (DTE) address

The AS/400 system treats the first byte of call-user data in an X.25 call
request packet as the PID.

* PID

The order of checking filters when multiple links are using the same communica-
tions line is from most to least restrictive. For example, suppose two user-
defined communications application programs (application program A and B) in
different jobs each have a link enabled that use the same token-ring communica-
tions line. Further suppose that application program A has activated a filter on
DSAP X'22" and application program B has activated a filter on DSAP X'22" and
SSAP X’22'. If a data frame comes in with a DSAP of X'22" and an SSAP of X'22’,
application program B wiil receive the frame. if a data frame comes in with a
DSAP of X'22" and an SSAP not equal to X’22’, application program A will
receive the frame.

The Display Connection Status (DSPCNNSTS) command can be used to display
the inbound routing information of all filters currently active for a link. See the
CL Reference for more information on the DSPCNNSTS command.

Format of Filter Information

All filter information must be provided by the user-defined communications appli-
cation program in the output buffer that was created when the link was enabled.
The output buffer should be treated as one large space with the size equal to the
number of data units created for the output buffer multiplied by the size of each
data unit. This information was returned by the QOLELINK program when the
link was enabled.

The filter information in the output buffer is made up of two parts. The first
portion starts at offset O from the top of the output buffer and contains filter
header data. The second portion of the filter information starts immediately after
the filter header.data in the output buffer and contains the filters that make up
the filter list.

Table 2-6 (Page 1 of 2). Filter Header Data

Field Type Description
function CHAR(1) Specifies the filter function to perform. The valid values are as follows:
X'00’ Deactivate all filters that are currently active for this link
and activate the filters specified in the filter list for this link.
X'01’ Activate the filters specified in the filter list for this link. All

filters currently active for this link will remain active.

X'02’ Deactivate the filters specified in the filter list that are cur-
rently active for this link.

Chapter 2. User-Defined Communications Support APls ~ 2-11

Table 2-6 (Page 2 of 2). Filter Header Data

Field Type Description

filter type CHAR(1) Specifies the type of the filters in the filter list. All filters in the filter list
must be of this type. In addition, this must be the same type as the
filters currently active for this link, if any. The valid values are as
follows:

X'00’ PID.

This filter type is only applicable for links using an X.25 com-
munications line and only applies to incoming SVC calls.

X0t PID and calling DTE address.

This filter type is only applicable for links using an X.25 com-
munications line and only applies to incoming SVC calls.

X'02 DSAP.

This filter type is only applicable for links using a token-ring
or Ethernet communications line.

X'03’ DSAP, SSAP, and optional frame type.
This filter type is only applicable for links using a token-ring
or Ethernet communications line.

X' 04 DSAP, SSAP, optional frame type, and sending adapter

address.

This filter type is only applicable for links using a token-ring
or Ethernet communications line.

Note: The filter type field must be set even if there are no filters in the
filter list.

number of filters BINARY(2) Specifies the number of filters in the filter list. Any value between 0
and 256 may be used.

Note: The maximum number of filters that can be specified in the filter
list is also limited by the total size of the output buffer which may
accommodate less than 256 filters.

filter length BINARY(2) Specifies the length of each filter in the filter list. This value must be 16
for filter types X’00” and X’01’, and 14 for filter types X'02’, X’03’, and
X'04’. '

Note: The filter length field must be set even if there are no filters in
the filter list.

The format of each filter in the filter list is described below. All filters in the filter
list must be contiguous with each other and be of the type specified in the filter
type field in the filter header data.

X.25 Filters (Filter Types X’00’ and X"01’)

Table 2-7 (Page 1 of 2). Filter Types X’00” and X'01’
Field Type Description

PID length CHAR(1) Specifies the length of the PID on which to route incoming calls. The
valid values are as follows:

X'00’ Route incoming calls with no PID specified. That is, with no
call user data in the call request packet.

X01’ Route incoming calls with the PID being treated as the first
byte of call user data in the call request packet.

2-12 AS/400 System Programmer’s Communications Interface Guide

Table 2-7 (Page 2

of 2). Filter Types X’00" and X'01’

Field

Type

Description

PID

CHAR(1)

Specifies the PID on which to route incoming calls. This should be set
to X’00” when the PID length field is set to X’00”. Otherwise, any value
may be used.

Note: Care should be taken when setting the PID field to an SNA PID
(X'C3’, X’'C6’, X’CB’, X'CFE’), Asynchronous PID (X’01’, X"C0’), or TCP/IP
PID (X’CC’). See “AS/400 System X.25 Call Control” on page 3-29 for
more information.

calling DTE
address length

CHAR(1)

Specifies, in hexadecimal, the number of binary coded decimal (BCD)
digits in the calling DTE address on which to route incoming calls. The
valid values are as follows:

X'00’ For filter type X’00".

X'01’ - X'OF’ For filter type X’01” when extended network
addressing is not configured in the line description.
See “QOLQLIND” on page 2-57 to determine if
extended network addressing is configured for this
line.

X01 - X111 For filter type X’01” when extended network
addressing is configured in the line description. See
“QOLQLIND” on page 2-57 to determine if extended
network addressing is configured for this line.

calling DTE
address

CHAR(12)

Specifies, in binary coded decimal (BCD), the calling DTE address on
which to route incoming calls. This should be set to BCD zeros when
the calling DTE address length field is set to X’00’. Otherwise, any valid
DTE address left-justified and padded on the right with BCD zeros may
be used.

additional
routing data

CHAR(1)

Specifies additional data on which to route incoming calls. This field is
applicable for all X.25 filter types and is bit-sensitive with bit 0 (leftmost
bit) defined for reverse charging options and bit 1 defined for fast select
options. The remaining bits are undefined and should be set off ("0’B).

The valid values for bit 0 are as follows:
'0'B Accept reverse charging.

'1’B Do not accept reverse charging.
The valid values for bit 1 are as follows:
‘0’'B Accept fast select.

'1’B Do not accept fast select.

For example, consider the following values for the additional routing
data field:

X'00’ Accept reverse charging and accept fast select.

X4y’ Accept reverse charging and do not accept fast select.

X'80’ Do not accept reverse charging and accept fast select.

X'co’ Do not accept reverse charging and do not accept fast
select.

Chapter 2. User-Defined Communications Support APIs 2-13

.

Token-ring and Ethernet Filters (Filter Types X"02’, X’03’ and X"04’)

Table 2-8. Filter Types X’02’, X'03" and X'04'

Field

Type

Description

DSAP address
length

CHAR(1)

Specifies the length of the DSAP address on which to route incoming
frames. This must be set to X'01".

DSAP address

CHAR(1)

Specifies the DSAP address on which to route incoming frames. The
DSAP address is the service access point on which the incoming frame
arrived. Any service access point configured in the token-ring or
Ethernet line description as *NONSNA may be used.

Note: The Ethernet Version 2 standard does not define a DSAP address
in an Ethernet Version 2 frame. Therefore, to receive Ethernet Version
2 frames, a null DSAP address (X’00’) must be specified in the DSAP
address field. Also, the Ethernet Standard (ETHSTD) parameter in the
Ethernet line description must be configured as either *ETHV2 or *ALL.

SSAP address
length

CHAR(1)

Specifies the length of the SSAP address on which to route incoming
frames. The valid values are as follows:

X'00’ For filter type X'02".
Xo01 For filter types X’03” and X'04".

SSAP address

CHAR(1)

Specifies the SSAP address on which to route incoming frames. The
SSAP address is the service access point on which the incoming frame
was sent. The valid values are as follows:

X’00’ For filter type X’02’.
X'00’ - X'FF’. For filter types X’03” and X'04".

Note: The Ethernet Version 2 standard does not
define an SSAP address in an Ethernet Version 2
frame. Therefore, to receive Ethernet Version 2
frames, a null SSAP address (X’00’) must be speci-
fied in the SSAP address field. Also, the Ethernet
Standard (ETHSTD) parameter in the Ethernet line
description must be configured as either *ETHV2 or
*ALL.

frame type
length

CHAR(1)

Specifies the length of the frame type on which to route incoming
frames. The valid values are as follows:

X’'00’ For filter type X’02’. Also for filter types X'03" and
X’04’ when the DSAP address and SSAP address
fields are not both set to X’00’.

X’00’ or X'02’ For filter types X’03’ and X'04” when the "DSAP
address’ and SSAP address fields are both set to
X’00".

frame type

CHAR(2)

Specifies the frame type on which to route incoming frames. The frame
type is defined in an Ethernet Version 2 frame to indicate the upper
layer protocol being used. This must be set to X’0000” when the frame
type length field is set to X’00”. Otherwise, any value except X"80D5’
(SNA) may be used, but should be in the range of X’05DD” - X’FFFF’.

sending adapter
address length

CHAR(1)

Specifies, in hexadecimal, the length of the sending adapter address on
which to route incoming frames. The valid values are as follows:

X'00’ For filter types X’02” and X"03".
X'06’ For filter type X"04".

sending adapter
address

CHAR(6)

Specifies, in packed form, the sending adapter address on which to
route incoming frames. This must be set to X"000000000000” when the
sending adapter address length field is set to X’00’. Otherwise, any
valid adapter address may be used.

2-14 AS/400 System Programmer’s Communications Interface Guide

General Filter Rules
The following is a list of rules for activating and deactivating filters:

e all active filters for a link must be of the same type

* a link can have a maximum of 256 active filters

* the maximum number of filters that can be specified in the filter list can be
no more than 256, and may be less, depending on the size of the output

buffer

e a request to activate a filter for a link that already has the same filter active
will be successful, but the filter will only be activated once

o
js¥)
(¢

Ko
c
¢
)
—
—
(o]
joR
@
J<¥]
Q
il
<
[
—
o]
V]
=h
=
@
-~
c
-
Q
=1

successful

[T

Al md demn s sl £
K Liidt 11 I

e if the return and reason code from the QOLSETF program is not 0/0, none of
the specified filters were activated or deactivated
e once a filter is activated, it will remain active until one of the following

occurs:

— it is deactivated by explicitly calling the QOLSETF program
— the link that the filter was active for is disabled

Return and Reason Codes

Table 2-9 (Page 1 of 2). Return and Reason Codes for QOLSETF

Return /

Reason

Code Meaning Recovery

0/0 Cperation successful. Continue processing

80/2200 Data queue error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the user-defined com- in the job log for further information. Then
munications application program when this correct the error, enable the link, and try the
return and reason code is received. request again.

80/2401 Output buffer error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the user-defined com- in the job log for further information. Then
munications application program when this correct the error, enable the link, and try the
return and reason code is received. request again.

80/3002 A previous error occurred on this link that was Ensure the link is disabled and see messages
reported to the user-defined communications in the job log for further information. If
application program by escape message escape message CPFS1F0 was sent to the
CPF91F0 or CPF91F1. However, the user- user-defined communications application
defined communications application program program, then report the problem using the
has attempted another operation. ANZPRB command. Otherwise, correct the

error, enable the link, and try the request
again.

80/4000 Error recovery has been canceled for this link. Ensure the link is disabled and see messages
in the job log for further information. Then
correct the condition, enable the link, and try
the request again.

80/9999 Internal system error detected. Escape See messages in the job log for further infor-

message CPF31F0 will be sent to the user-
defined communications application program
when this return and reason code is received.

mation. Then, report the problem using the
ANZPRB command.

Chapter 2. User-Defined Communications Support APIs

2-15

Table 2-9 (Page 2 of 2). Return and Reason Codes for QOLSETF

Return /

Reason

Code Meaning Recovery

83/1998 The size of the output buffer is not large Reduce the number of filters in the filter list
enough for the specified number of filters. so that the size of the filter list plus the size of

the filter header data is less than or equal to
the size of the output buffer. Try the request
again.

83/1999 Incorrect filter header data or incorrect filter Correct the incorrect filter header data or the
in the fiiter iist. if the fiiter header data is incorrect filter in the filter list. Try the request
incorrect, the error offset parameter will point again.
to the field in error. If a filter in the filter list
is incorrect, the error offset parameter will
point to the beginning of the incorrect filter.

83/3001 Link not enabled. Correct the communications handle param-

eter. Try the request again.

83/3003 One of the following is true of a filter in the Do one of the following, and try the request
filter list. The error offset parameter will point again:
to the beginning of the offending filter. * end the job that has already activated the

 the filter is already activated by another filter
job using the same communications line « configure the service access point in the
* the service access point, specified in the token-ring or Ethernet line description
ES:FZ da?r?;ﬁzstgflei (:ifnthz:'gﬁ: ! :,S ntolt con- * delete the Ethernet line description, and
dg ot -ring ernetline create another Ethernet line description
escription specifying *ETHV2 or *ALL in the Ethernet
+ the DSAP address field of the filter con- Standard (ETHSTD) parameter
tains the null DSAP address (X'00), but * change the service access point in the
the Ethernet Standard (ETHSTD) param- 9e °S8 p I
.) S token-ring or Ethernet line description to
eter in the Ethernet line description is not non-SNA use (*NONSNA)
configured as *ETHV2 or *ALL
* the service access point, specified in the
DSAP address field of the filter, is config-
ured in the token-ring or Ethernet line
description for SNA use only (*SNA)

83/3004 Link is enabling. Wait for the enable-complete entry to be sent
to the data queue. If the link was successfully
enabled, try the request again.

83/3200 All resources are currently in use by asyn- Wait for at least one of the asynchronous
chronous operations that have not yet com- operations to complete. Notification of com-
pleted. pletion of these operations will be received
Note: This return and reason code is only from the QOLRECV program. Try the request
possible for links using an X.25 communica- again.
tions line. See “QOLSEND” on page 2-17 for
more information.

83/4001 Link failure, system starting error recovery for Wait for the link to recover. Try the request
this link. again.

2-16 AS/400 System Programmer’s Communications Interface Guide

QOLSEND

Parameter List

CALL QOLSEND(return code,
reason code,
diagnostic data, .
new provider connection end point ID,
new user connection end point ID,
existing provider connection end point ID,
communications handle,
operation,
number of data units)

Table 2-10 (Page 1 of 2). QOLSEND Parameter List

Parameter

Use

Type

Description

return code

output

BINARY(4)

Specifies the recovery action to take. See “Return and
Reason Codes” on page 2-35.

reason code

output

BINARY(4)

Specifies the error that occurred. See “Return and Reason
Codes” on page 2-35.

diagnostic data

output

CHAR(40)

Specifies additional diagnostic data. See “Format of Diag-
nostic Data Parameter” on page 2-18 for more information.

The content of this parameter is only valid when the opera-
tion parameter is set to X’0000” or X"B400’.

new provider
connection end
point ID

output

BINARY(4)

Specifies the provider connection end point (PCEP) ID for
the connection that is to be established. This identifier
must be used on all subsequent calls to the QOLSEND
program for this connection.

The content of this parameter is only valid for links using
an X.25 communications line and when the operation
parameter is set to X’"B000’.

new user con-
nection end
point ID

input

BINARY(4)

Specifies the user connection end point (UCEP) ID for the
connection that is to be established. This is the identifier
on which all incoming data for this connection will be
received. Any numeric value except zero should be used.
See “QOLRECV” on page 2-40 for more information.

The content of this parameter is only valid for links using
an X.25 communications line and when the operation
parameter is set to X’"B000” or X"B400".

connection end
point 1D

existing provider

input

BINARY(4)

Specifies the PCEP ID for the connection on which this
operation will be performed. For links using a token-ring or
Ethernet communications line, the content of this param-
eter must always be set to 1.

For links using an X.25 communications line, the content of
this parameter is only valid when the operation parameter
is set to X’0000”, X’B100", X"B400’, or X’BF00". It must
contain the PCEP ID that was returned in the new provider
connection end point ID parameter from the call to the
QOLSEND program with operation X’"B000’, or the PCEP ID
that was returned in the new provider connection end point
ID parameter from the call to the QOLRECV program with
operation X’B201’ (incoming call). See “QOLRECV” on
page 2-40 for more information on receiving X.25 calls.

Chapter 2. User-Defined Communications Support APls

2-17

Table 2-10 (Page 2 of 2). QOLSEND Parameter List

Parameter Use Type Description

communications input CHAR(10) Specifies the name of the link on which to perform the
handle output operation.

operation input CHAR(2) Specifies the type of output operation to perform. The

valid values are as follows:
X'0000’ Send data.

X'B000’ Send call request packet (SVC) or open PVC
connection.

This operation is only valid for links using an
X.25 communications line.

X'B100’ Send clear packet (SVC) or close PVC con-
nection.

This operation is only valid for links using an
X.25 communications line.

X’'B400’ Send call accept packet (SVC).

This operation is only valid for links using an
X.25 communications line.

X’BF00’ Send reset request packet or reset confirmation
packet (SVC or PVC).

This operation is only valid for links using an
X.25 communications line.

number of data input BINARY(4) Specifies the number of data units in the output buffer that
units contain data. Any value between 1 and the number of data
units created in the output buffer may be used.

The content of this parameter is only valid when the opera-
tion parameter is set to X’0000’.

Note: The number of data units created in the output
buffer was returned in the data units created parameter on
the call to the QOLELINK program. See “QOLELINK” on
page 2-3 for more information.

Format of Diagnostic Data Parameter

The format of the diagnostic data parameter is shown below. The contents of
“the fields within this parameter are only valid on X’0000" and X’B400" operations
for the indicated return and reason codes.

Table 2-11 (Page 1 of 3). Diagnostic Data Parameter

Field Type Description

reserved CHAR(2) Not used.

error code CHAR(4) Specifies hexadecimal diagnostic information that can be used to deter-
mine recovery actions. See “Error Codes” on page 5-11 for more infor-
mation.

The content of this field is only valid for 83/4001, 83/4002, and 83/4003
return/reason codes.

time stamp CHAR(8) Specifies the time the error occurred.

The content of this field is only valid for 83/4001, 83/4002, and 83/4003
return/reason codes.

2-18 AS/400 System Programmer’s Communications Interface Guide

Table 2-11 (Page 2 of 3). Diagnostic Data Parameter

Field

Type

Description

error log identi-
fier

CHAR(4)

Specifies the hexadecimal identifier that can be used for locating error
information in the error log.

The content of this field is only valid for 83/4001, 83/4002, and 83/4003
return/reason codes.

reserved

CHAR(10)

Not used.

indicators

CHAR(1)

Specifies indicators the user-defined communications application
program can use for diagnosing a potential error condition. This is a bit
sensitive field.

The valid values for bit 0 (leftmost bit) are as follows:

'0’B Either there is no message in the QSYSOPR message queue,
or there is a message and it does not have the capability to
run problem analysis report (PAR) to determine the cause of
the error. ‘

'1’B There is a message in the QSYSOPR message queue for this
error, and it does have the capability to run problem anal-
ysis report (PAR) to determine the cause of the error.

The valid values for bit 1 are as follows:

'0’'B The line error can be retried.

1B The line error cannot be retried.

The valid values for bit 2 are as follows:

'0’B The cause and diagnostic codes fields are not valid.
‘’B The cause and diagnostic codes fields are valid.
The valid values for bit 3 are as follows:

0'B The error has not been reported to the system operator
message queue.

1B The error has been reported to the system operator
message queue.

For example, consider the following values for the indicators field:

X207 A condition has caused X.25 cause and diagnostic codes to
be passed to the application. This information can deter-
mine the cause of the condition.

X'50/ An error has occurred and been reported to the QSYSOPR
message queue. The error cannot be retried.

X'FO’ An error has occurred and been reported to the QSYSOPR
message queue. The error cannot be retried, and has X.25
cause and diagnostic codes associated with it. Also a
problem analysis report can be generated to determine the
probable cause.

The content of this field is only valid for 83/4001, 83/4002, 83/3202 and
83/4003 return/reason codes.

X.25 cause code

CHAR(1)

Specifies additional information on the condition reported. See the X.25
Network Guide for interpreting the values of this field.

The content of this field is only valid for 83/4001, 83/4002 and 83/3202
return/reason codes.

X.25 diagnostic
code

CHAR(1)

Specifies additional information on the condition reported. See the X.25
Network Guide for interpreting the values of this field.

The content of this field is only valid for 83/4001, 83/4002 and 83/3202
return/reason codes.

Chapter 2. User-Defined Communications Support APIs ~ 2-19

Table 2-11 (Page 3 of 3). Diagnostic Data Parameter

Field Type Description
reserved CHAR(1) Not used.
error offset BINARY(4) Specifies the offset from the top of the output buffer to the incorrect

data in the output buffer.

The content of this field is only valid for a 83/1999 return/reason code.

reserved

CHAR(4) Not used.

Description of Function

The QOLSEND program is called by a user-defined communications application
program to perform output on a link that is currently enabled in the job in which
the user-defined communications application program is running. The type of
output operation to perform is specified in the operation parameter. The data
associated with the output operation must be provided by the user-defined com-
munications application program in the output buffer that was created when the
link was enabled. For X’0000" operations, the user-defined communications
application program must also provide a description of that data in the output
buffer descriptor that was created when the link was enabled.

The types of output operations that can be performed on a link depend on the
type of communications line that the link is using. See “LAN Output Operations”
for more information on output operations that are supported on links using a
token-ring or Ethernet communications line. See “X.25 SVC and PVC Output
Operations” on page 2-22 for more information on output operations that are
supported on links using an X.25 communications line.

LAN Output Operations

The only supported output operation on links using a token-ring or Ethernet com-
munications line is X’0000” (send user data). For each data frame to be sent on
the network, the user-defined communications application program must provide
the following information:

* logical link control (LLC) information, optional routing information, and user
data in the next data unit of the output buffer, starting with the first data unit

* a description, in the corresponding element of the output buffer descriptor, of
the information in that data unit.

For example, suppose a user-defined communications application program
wants to send two data frames. The information for the first frame would be
placed in first data unit of the output buffer and described in the first element of
the output buffer descriptor. The information for the second frame would be
placed in the second data unit of the output buffer and described in the second
element of the output buffer descriptor. The number of data units parameter on
the call to the QOLSEND program would be set to 2.

Note: The X’0000” operation is synchronous. Control will not return from the
QOLSEND program until the operation completes.

Data Unit Format - LAN Operation X’0000”: Each data frame to be sent on the
network corresponds to a data unit in the output buffer. The information in each
of these data units is made up of LLC information, optional routing data, and
user data.

2-20 AS/400 System Programmer’s Communications Interface Guide

The LLC information starts at offset O from the top of the data unit. The routing
information (if any) starts immediately after the LLC information and the user
data starts immediately after the routing information. If there isn’t any routing
information, the user data starts immediately after the LLC information.

Table 2-12 shows the format of the LLC information.

Table 2-12 (Page

1 of 2). Format of the LLC Information

Field

Type

Description

length of LLC
information

BINARY(2)

Specifies the length of the LLC information in the data unit. This must
be set to 16.

destination
adapter address

CHAR(6)

Specifies, in packed form, the adapter address to which this data frame
will be sent.

Note: Because user-defined communications support only allows
connectionless service over LANSs, it is not necessary for all frames
being sent on a single output operation to have the same destination
adapter address.

DSAP address

CHAR(1)

Specifies the service access point on which the destination system will
receive this frame. Any value may be used.

Note: The Ethernet Version 2 standard does not define a DSAP address
in an Ethernet Version 2 frame. Therefore, to send Ethernet Version 2
frames, a null DSAP address (X’00’) must be specified in the DSAP
address field. Also, the Ethernet Standard (ETHSTD) parameter in the
Ethernet line description must be configured as either *ETHV2 or *ALL.

SSAP address

CHAR(1)

Specifies the service access point on which the AS/400 system will send
this frame. Any service access point configured in the token ring or
Ethernet line description may be used.

Note: The Ethernet Version 2 standard does not define an SSAP
address in an Ethernet version 2 frame. Therefore, to send Ethernet
Version 2 frames, a null SSAP address (X’00’) must be specified in the
SSAP address field. Also, the Ethernet Standard (ETHSTD) parameter
in the Ethernet line description must be configured as either *ETHV2 or
*ALL.

access control

CHAR(1)

Specifies outbound frame priority and is mapped to the access priority
bits in the access control field of 802.5 frames. For links using a token-
ring communications line, any value between X’00” and X’07” may be
used, where X’00’ is the lowest priority and X’07” is the highest priority.

For links using an Ethernet communications line, the content of this field
is not applicable and must be set to X’00".

priority control

CHAR(1)

Specifies how to interpret the value set in the access control field. For
links using a token-ring communications line, the valid values are as
follows:

X'00’ Use any priority less than or equal to the value set in the
access control field.

X'01’ Use the priority exactly equal to the value set in the access
control field.

X'FF’ Use the AS/400 system default priority.

For links using an Ethernet communications line, the content of this field
is not applicable and must be set to X"00.

Chapter 2. User-Defined Communications Support APIs ~ 2-21

Table 2-12 (Page 2 of 2). Format of the LLC Information

Field

Type Description

length of routing
information

BINARY(2) Specifies the length of the routing information in the data unit. For links
using a token-ring communications line, any value between 0 and 18
may be used, where 0 indicates that there is no routing information.

For links using an Ethernet communications line, the content of this field
is not applicable and must be set to 0 indicating that there is no routing
information.

length of user
data

BINARY(2) Specifies the length of the user data in the data unit. This must be less
than or equal to the maximum frame size allowed on the service access
point specified in the SSAP address field. See “QOLQLIND” on

page 2-57 to determine the maximum frame size allowed on the service
access point specified in the SSAP address field.

For Ethernet Version 2 frames, this must be at least 48 and not more
than 1502 (including 2 bytes for the Ethernet type field).

Note: Ethernet 802.3 frames will be padded when the user data is less
than 48 bytes.

Output Buffer Descriptor Element Format - LAN Operation X’0000’: The informa-
tion specified in each data unit of the output buffer must be described in the cor-
responding element of the output buffer descriptor. Table 2-13 shows the format
of each element in the output buffer descriptor.

Table 2-13. Format of an Element in the Output Buffer Descriptor

Field Type Description

length BINARY(2) Specifies the number of bytes of information in the corresponding data
unit of the output buffer. This must be equal to the length of the LLC
information plus the length of the routing information plus the length of
the user data specified in Table 2-12 on page 2-21.

reserved CHAR(30) Not used.

X.25 SVC and PVC Output Operations

Table 2-14 shows the output operations that are supported on links using an X.25
communications line.

Table 2-14 (Page 1 of 2). X.25 SVC and PVC Output Operations

Operation Meaning

X’0000” Send user data (SVC or PVC).
Note: This is a synchronous operation. Control will not return from the QOLSEND
program until the operation completes.

X’B000’ Send a call request packet (SVC) or open the PVC connection.

Note: This is an asynchronous operation. Notification of the completion of this opera-
tion will be returned from the QOLRECV program with operation X’B001’ only after
control returns from the QOLSEND program with a 0/0 return and reason code. See
“QOLRECV” on page 2-40 for more information.

2-22 AS/400 System Programmer’s Communications Interface Guide

Table 2-14 (Page 2 of 2). X.25 SVC and PVC Output Operations

Operation

Meaning

X’'B100’

Send a clear packet (SVC) or close the PVC connection.

Note: This'is an asynchronous operation. Notification of the completion of this opera-
tion will be returned from the QOLRECV program with operation X’B101” only after
control returns from the QOLSEND program with a 0/0 return and reason code. See
“QOLRECV” on page 2-40 for more information.

X’B400”

Send a call accept packet (SVC only).

Note: This is a synchronous operation. Control will not return from the QOLSEND
program until the operation completes.

X’BF00’

Send a reset request or reset confirmation packet (SVC or PVC).

Note: This is an asynchronous operation. Notification of the completion of this opera-
tion will be returned from the QOLRECV program with operation X’"BF01” only after
control returns from the QOLSEND program with a 0/0 return and reason code. See
“QOLRECV” on page 2-40 for more information.

Note: The maximum number of outstanding asynchronous operations (notification of completion not yet
received from the QOLRECV program) is five. All calls made to the QOLSEND program or QOLSETF program
under this condition will be rejected with a return and reason code of 83/3200.

X.25 Operation X’0000’

This operation is used to send user data on an SVC or PVC X.25 connection.
The user-defined communications application program must provide the fol-
lowing information:

e user data in the next data unit of the output buffer, starting with the first data
unit

¢ a description, in the corresponding element of the output buffer descriptor, of
the user data in that data unit.

For example, suppose a user-defined communications application program
wants to send two data units of user data. The first portion of the user data
would be placed in first data unit of the output buffer and described in the first
element of the output buffer descriptor. The second portion of the user data
would be placed in the second data unit of the output buffer and described in the
second element of the output buffer descriptor. The number of data units param-
eter on the call to the QOLSEND program would be set to 2.

User-defined communications support will automatically fragment the user data
in each data unit into one or more appropriately sized X.25 packets based on the
negotiated transmit packet size for the connection. All packets constructed for a
data unit, except for the last (or only) packet, will always have the X.25 more
data bit (M-bit) set on. See “Output Buffer Descriptor Element Format - X.25
Operation X’0000"” for more information on how to set the X.25 M-bit on or off in
the last (or only) packet constructed for a data unit.

Data Unit Format - X.25 Operation X’0000”: Each data unit in the output buffer
consists solely of user data and starts offset 0 from the top of the data unit.

Output Buffer Descriptor Element Format - X.25 Operation X’0000’: The user
data specified in each data unit of the output buffer must be described in the
corresponding element of the output buffer descriptor.

Chapter 2. User-Defined Communications Support APls ~ 2-23

Table 2-15 shows the format of each element in the output buffer descriptor.

Table 2-15. Format of an Element in the Output Buffer Descriptor

Field Type Description
length BINARY(2) Specifies the number of bytes of user data in the corresponding data
unit of the output buffer. This must always be less than or equal to the

X.25 user data size parameter that was specified on the call to the

QOLELINK program when the link was enabled. See “QOLELINK” on

page 2-3 for more information.

more data indi- CHAR(1) Specifies if the X.25 more data bit (M-bit) should be set on or off in the
cator last (or only) X.25 packet constructed for the corresponding data unit.

The valid values are as follows:

X007 Set the M-bit off in the last (or only) X.25 packet constructed
for the corresponding data unit.

X001’ Set the M-bit on in the last (or only) X.25 packet constructed
for the corresponding data unit.

Note: When this value is selected, the length field must be
set to a multiple of the negotiated transmit packet size for
the connection.
qualified data CHAR(1) Specifies if the X.25 qualifier bit (Q-bit) should be set on or off in all
indicator X.25 packets constructed for the corresponding data unit. The valid
values are as follows:

X'00’ Set the Q-bit off in all X.25 packets constructed for the cor-
responding data unit.

X'01 Set the Q-bit on in all X.25 packets constructed for the corre-
sponding data unit.

interrupt packet CHAR(1) Specifies if the user data in the corresponding data unit should be sent
indicator in an X.25 interrupt packet. The valid values are as follows:

X'00’ Send the user data in the corresponding data unit in one or
more X.25 data packets.

X'01’ Send the user data in the corresponding data unit in an X.25
interrupt packet. An interrupt packet causes the data to be
expedited.

Note: When this value is selected, the length field must be
set to a value between 1 and 32, and number of data units
parameter on the call to the QOLSEND program must be set
to 1. Also, the contents of the more data indicator, qualified
data indicator, and delivery confirmation indicator fields are
ignored.

delivery confir- CHAR(1) Specifies if the X.25 delivery confirmation bit (D-bit) should be set on or

mation indicator off in all X.25 packets constructed for the corresponding data unit. The

valid values are as follows:

X'00’ Set the D-bit off in all X.25 packets constructed for the corre-
sponding data unit.

X'01’ Set the D-bit on in all X.25 packets constructed for the corre-
sponding data unit.

Note: The AS/400 system does not fully support delivery confirmation

when sending user data. Confirmation is from the local data circuit

equipment (DCE).
reserved CHAR(26) Not used.

2-24 As/400 System Programmer’s Communications Interface Guide

X.25 Operation X’B000’

This operation is used to either initiate an SVC call or to open a PVC connection.
The user-defined communications application program must provide the data for
this operation in the first data unit of the output buffer. The output buffer
descriptor is not used.

The format of the data required for the X’"B000” operation depends on whether it
is used to initiate an SVC call or to open a PVC connection. Each format will be
explained below.

Note: When initiating an SVC call, the AS/400 system will choose an available
SVC to use. The logical channel identifier of the SVC that was chosen will be
returned when notification of the completion of X’B000’ is received from the
QOLRECYV program (operation X’B001"). See “QOLRECV” on page 2-40 for more
information.

Data Unit Format - X.25 Operation X’B000’ (Initiate an SVC Call): The data for
this operation starts at offset 0 from the top of the first data unit in the output
buffer.

Table 2-16 shows the format of the data required for the X’BO00” operation when
initiating an SVC call.

Table 2-16 (Page 1 of 4). Format of Data for X’B000’ Operation (Initiate an SVC Call)

Field Type Description

reserved CHAR(1) This field must be set to X’02".

reserved CHAR(3) This field must be set to hexadecimal zeros (X’0000007).

transmit packet BINARY(2) Specifies the requested transmit packet size for this connection. The
size valid values are 64, 128, 256, 512, and 1024. The value specified must

be less than or equal to the transmit maximum packet size configured
for this line. The special value of X’FFFF’ may be specified to use the
transmit default packet size configured for this line.

See “QOLQLIND” on page 2-57 for information on determining the
transmit maximum packet size and the transmit default packet size con-
figured for this line.

transmit window BINARY(2) Specifies the requested transmit window size for this connection. The
size valid values are as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X'FFFF’ Use the transmit default window size configured for this line.

See “QOLQLIND” on page 2-57 for information on determining the
modulus value and the transmit default window size configured for this

line.
receive packet BINARY(2) Specifies the requested receive packet size for this connection. The
size valid values are 64, 128, 256, 512, and 1024. The value specified must

be less than or equal to the receive maximum packet size configured
for this line. The special value of X’FFFF’ may be specified to use the
receive default packet size configured for this line.

See “QOLQLIND" on page 2-57 for information on determining the
receive maximum packet size and the receive default packet size con-
figured for this line.

Chapter 2. User-Defined Communications Support APls 2-295

Table 2-16 (Page 2 of 4). Format of Data for X’B000’ Operation (Initiate an SVC Call)

Field Type Description
receive window BINARY(2) Specifies the requested receive window size for this connection. The
size valid values are as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X'FFFF’ Use the receive default window size configured for this line.

See “QOLQLIND” on page 2-57 for information on determining the
modulus value and the receive default window size configured for this

line.
reserved CHAR(7) Not used. This field should be set to hexadecimal zeros.
DTE address BINARY(1) Specifies the number of binary coded decimal (BCD) digits in the DTE
length address to call. The valid values are as follows:
1-15 When extended network addressing is not configured for this
line.
1-17 When extended network addressing is configured in the line
description.

See “QOLQLIND” on page 2-57 to determine if extended network
addressing is configured for this line.

DTE address CHAR(16) Specifies, in binary coded decimal (BCD), the DTE address to call. The
address must be left justified and padded on the right with BCD zeros.
reserved CHAR(8) Not used. This field should be set to hexadecimal zeros.
delivery confir- CHAR(1) Specifies if the X.25 delivery confirmation bit (D-bit) should be set on or
matinn crimnard Aff in tha Aall ramiiact nankat Tha ualid valitne ara ac fallauwa:
niauwvii OUHFU! L Uil arn uic vail |cqucan FG\JT\UL. 1T vaiiu vaiuc©o arc Ao iviivwo.
X'00 Set the D-bit off in the call request packet.
X'01 Set the D-bit on in the call request packet.
reserved CHAR(7) Not used. This field should be set to hexadecimal zeros.
closed user CHAR(1) Specifies if the closed user group (CUG) identifier should be included in
group indicator the call packet. The valid values are as follows:
X007 Do not include the CUG identifier in the call packet.
X'01’ Include the CUG identifier in the call packet.
closed user CHAR(1) Specifies the CUG identifier to be included in the call packet. The valid
group identifier values are as follows:
X'00/ When the closed user group indicator field is set to
X'00
X'00’ - X'99’ When the closed user group indicator field is set to
X'01’
reverse charging CHAR(1) Specifies reverse charging options. The valid values are as follows:
indicator X'00/ Do not request reverse charging.
X'01’ Request reverse charging.
fast select indi- CHAR(1) Specifies fast select options. The valid values are as follows:
cator X'00’ Do not request fast select.
X'01’ Request fast select with restriction.
X'02’ Request fast select without restriction.

2-26 AS/400 System Programmer’s Communications Interface Guide

Table 2-16 (Page 3 of 4). Format of Data for X'B000’ Operation (Initiate an SVC Call)

Field Type Description
X.25 facilities BINARY(1) Specifies the number of bytes of data in the X.25 facilities field. Any
length value between 0 and 109 may be used.

Note: The AS/400 system codes the closed user group, reverse
charging, and fast select facilities in the X.25 facilities field, if the user
requested them in the above fields. Additionally, if the network user
identification parameter (NETUSRID) is specified in the line description,
the network user identification (NUI) facility is coded in the field, fol-
lowing the other additional facilities, if present. Finally, if the packet
and window size values specified are different than the network default,
the facilities containing these values are coded in the field as well. The
system will update the X.25 facilities length field appropriately for each
facility to which the AS/400 system adds the X.25 facilities field. This
length cannot exceed 109 bytes.

X.25 facilities CHAR(109) Specifies additional X.25 facilities data requested.

Note: The application programmer should not code the facilities for
NUI, fast select, reverse charging, closed user group, packet size, or
window size in this field. By doing so, this field could contain duplicate
facilities, which may not be consistently supported by all X.25 networks.

reserved CHAR(48) Not used. This field should be set to hexadecimal zeros.
call user data BINARY(2) Specifies the number of bytes of data in the call user data field. The
length valid values are as follows:

0-16 When the fast select indicator field is set to X'00".

0-128 When the fast select indicator field is set to X’01” or X’02’.

call user data CHAR(128) Specifies the call user data.

reserved CHAR(128) Not used. This field should be set to hexadecimal zeros.

control informa- CHAR(1) Specifies control information for this connection. This is a bit-sensitive
tion field with bit 0 (leftmost bit) defined for reset support. The remaining

bits are undefined and should be set off ("0’B).
The valid values for bit 0 are as follows:
‘0'B Resets are not supported on this connection.

When this value is selected, the X’"BF00’ output operation
will not be valid on this connection. Also, a reset indication
packet received on this connection will cause the connection
to be ended.

1B Resets are supported on this connection.

When this value is selected, the X’BF00’ output operation
will be valid on this connection. Also, the user-defined com-
munications application program will be required to handle
reset indications received on this connection.

For example, consider the following values for the control information

field:

X'00 Resets are not supported on this connection.

X'80’ Resets are supported on this connection.
reserved CHAR(3) Not used. This field should be set to hexadecimal zeros.

Chapter 2. User-Defined Communications Support APls ~ 2-27

Table 2-16 (Page 4 of 4). Format of Data for X’B000’ Operation (Initiate an SVYC Call)

Field

Type

Description

maximum data
unit assembly
size

BINARY(4)

Specifies the maximum number of bytes of user data that can be
received in a complete X.25 packet sequence on this connection. If this
limit is exceeded, the connection will be ended. Any value between
1024 and 32767 may be used, and should be set to the greatest value
that the application will support.

Notes:

1. If the number of bytes of user data received in a complete X.25
packet sequence is more than can fit into one data unit of the input
buffer, the more data indicator field in the corresponding element of
the input buffer descriptor will be set to X’01” and the remaining
user data will be filled in the next data unit. See “QOLRECV” on
page 2-40 for more information.

2. There is no limitation on the number of bytes of user data that can
be sent in a complete X.25 packet sequence. However, the
QOLSEND program may need to called more than once.

automatic flow
control

BINARY/(2)

Relates to the amount of data that will be held by user-defined commu-
nications support before sending a receive not ready (RNR) packet to
the sending system. The recommended value for this field is 32, but
any value between 1 and 128 may be used.

Note: A receive ready (RR) packet will be sent when the user-defined
communications application program receives some of the data.

reserved

CHAR(30)

Not used. This field should be set to hexadecimal zeros.

Data Unit Format - X.25 Operation X’B000’ (Open a PVC Connection): The data

for this operation starts at offset 0 from the top of the first data unit in the output
buffer.

Table 2-17 shows the format of the data required for the X’"B0O00” operation when
opening a PVC connection

Table 2-17 (Page 1 of 3). Format of Data for X’B000’ Operation (Open a PVC Connection)

Field

Type

Description

reserved

CHAR(1)

This field must be set to X’00’.

reserved

CHAR(1)

Not used. This field should be set to hexadecimal zeros (X'00).

logical channel
identifier

CHAR(2)

Specifies the logical channel identifier of the PVC to open. Any PVC
configured for this line that is eligible to be used by the network con-
troller that the link is using may be specified and must be in the range
of X’0001” - X"OFFF".

See “QOLQLIND” on page 2-57 for information on determining the PVCs
configured for this line that are eligible to be used by the network con-
troller the link is using.

transmit packet
size

BINARY(2)

Specifies the requested transmit packet size for this connection. The
valid values are 64, 128, 256, 512, and 1024. The value specified must
be less than or equal to the transmit maximum packet size configured
for this line. The special value of X’FFFF’ may be specified to use the
transmit default packet size configured for this line.

See “QOLQLIND” on page 2-57 for information on determining the
transmit maximum packet size and the transmit default packet size con-
figured for this line.

2-28 AS/400 System Programmer’s Communications Interface Guide

Table 2-17 (Page 2 of 3). Format of Data for X’B000’ Operation (Open a PVC Connection)

Field Type Description
transmit window BINARY(2) Specifies the requested transmit window size for this connection. The
size valid values are as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X'FFFF’ Use the transmit default window size configured for this line.

See “QOLQLIND” on page 2-57 for information on determining the
modulus value and the transmit default window size configured for this

line.
receive packet BINARY(2) Specifies the requested receive packet size for this connection. The
size valid values are 64, 128, 256, 512, and 1024. The value specified must

be less than or equal to the receive maximum packet size configured
for this line. The special value of X’FFFF” may be specified to use the
receive default packet size configured for this line.

See “"QOLQLIND” on page 2-57 for information on determining the
receive maximum packet size and the receive default packet size con-
figured for this line.

receive window BINARY(2) Specifies the requested receive window size for this connection. The
size valid values are as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X'FFFF’ Use the receive default window size configured fof this line.

See “QOLQLIND” on page 2-57 for information on determining the
modulus value and the receive default window size configured for this

line.
reserved CHAR(32) Not used. This field should be set to hexadecimal zeros.
delivery confir- CHAR(1) Specifies the X.25 delivery confirmation bit (D-bit) support for this con-
mation support nection. The valid values are as follows:
X'00’ D-bit will be supported for sending data but not for receiving
data.
Note: When this value is selected and an X.25 packet is
received with the D-bit set on, the input/output processor
(IOP) will send a reset packet.
X'01’ D-bit will be supported for sending data and for receiving
data.
reserved CHAR(427) This field must be set to hexadecimal zeros.

Chapter 2. User-Defined Communications Support APIs 2-29

Table 2-17 (Page 3 of 3). Format of Data for X’B000’ Operation (Open a PVC Connection)

Field Type Description
control informa- CHAR(1) Specifies control information for this connection. This is a bit-sensitive
tion field with bit 0 (leftmost bit) defined for reset support. The remaining

bits are undefined and should be set off ("0’B).
The valid values for bit 0 are as follows:
- '0’'B Resets are not supported on this connection.

When this value is selected, the X’BF00’ output operation
will not be valid on this connection. Also, a reset indication
packet received on this connection will cause the connection
to be ended.

'1’B Resets are supported on this connection.

When this value is selected, the X’BF00” output operation
will be valid on this connection. Also, the user-defined com-
munications application program will be required to handie
reset indications received on this connection.

For example, consider the following values for the control information

field:
X'00’ Resets are not supported on this connection.
X'80’ Resets are supported on this connection.
reserved CHAR(3) Not used. This field should be set to hexadecimal zeros.
maximum data BINARY (4) Specifies the maximum number of bytes of user data that can be
unit assembly received in a complete X.25 packet sequence on this connection. If this
size limit is exceeded, the connection will be ended. Any value between
1024 and 32767 may be used.
Notes:

1. If the number of bytes of user data received in a complete X.25
packet sequence is more than can fit into one data unit of the input
buffer, the more data indicator field in the corresponding element of
the input buffer descriptor will be set to X’01” and the remaining
user data will be filled in the next data unit. See “QOLRECV” on
page 2-40 for more information.

2. There is no limit of the number of bytes of user data that can be
sent in a complete X.25 packet sequence. However, the QOLSEND
program may need to called more than once.

automatic flow BINARY(2) Relates to the amount of data that will be held by user-defined commu-
control nications support before sending a receive not ready (RNR) packet to
the sending system. The recommended value for this field is 32, but
any value between 1 and 128 may be used.

Note: A receive ready (RR) packet will be sent when the user-defined
communications application program receives some of the data.

reserved CHAR(30) Not used. This field should be set to hexadecimal zeros.

X.25 Operation X’B100’

This operation is used to either send a clear packet on an SVC, close an SVC
connection that was cleared by the remote system, or to close a PVC connection.
The user-defined communications application program must provide the data for
this operation in the first data unit of the output buffer. The output buffer
descriptor is not used.

2-30 As/400 System Programmer’s Communications Interface Guide

The format of the data required for the X’"B100” operation is the same whether or
not it is used to send a clear packet on an SVC or to close a PVC connection.
The format of the data required for the X’"B100” operation should be set to
hexadecimal zeros if it is used to close an SVC connection that was previously
cleared by the remote system.

Notes:

1. The AS/400 system provides the confirmation of the clear indication,
however, the local user-defined communications application must issue the
X’B100" operation to free the PCEP for the connection.

2. Closing a PVC connection will cause a reset packet to be sent to the remote

system.

Data Unit Format - X.25 Operation X’B100”: The data for this operation starts at
offset 0 from the top of the first data unit in the output buffer.

Table 2-18 shows the format of the data required for the X’"B100” operation.

Table 2-18. Format of Data for X’B100" Operation

Field Type Description

reserved CHAR(2) Not used. This field should be set to hexadecimal zeros (X"0000").

cause code CHAR(1) Specifies the X.25 cause code.

diagnostic code CHAR(1) Specifies the X.25 diagnostic code.

reserved CHAR(4) Not used. This field should be set to hexadecimal zeros.

X.25 facilities BINARY(1) Specifies the number of bytes of data in the X.25 facilities field. Any

length value between 0 and 109 may be used.
This field is not used for PVC connections and should be set
hexadecimal zeros (X"00007).

X.25 facilities CHAR(109) Specifies the X.25 facilities data.
This field is not used for PVC connections and should be set
hexadecimal zeros (X"0000").

reserved CHAR(48) Not used. This field should be set to hexadecimal zeros.

clear user data BINARY(2) Specifies the number of bytes of data in the clear user data field. Any

length value between 0 and 128 may be used.
This field is not used for PVC connections and should be set
hexadecimal zeros (X’0000").

clear user data CHAR(128) Specifies the clear user data.
Note: The CCITT standard recommends that this field only be present
in conjunction with the fast select or call deflection selection facility.
The AS/400 system does not enforce this restriction, however.
This field is not used for PVC connections and should be set
hexadecimal zeros (X"0000").

reserved CHAR(216) Not used. This field should be set to hexadecimal zeros.

Chapter 2. User-Defined Communications Support APis ~ 2-31

X.25 Operation X’B400’

This operation is used to accept an incoming SVC call. The user-defined com-
munications application program must provide the data for this operation in the
first data unit of the output buffer. The output buffer descriptor is not used.

Note: Notification of incoming calls are received from the QOLRECV program
with operation X’B201’. See “QOLRECV” on page 2-40 for more information.

Data Unit Format - X.25 Operation X’B400”: The data for this operation starts at
offset O from the top of the first data unit in the output buffer.

Table 2-19 shows the format of the data required for the X’"B400” operation.

Table 2-19 (Page 1 of 3). Format of Data for X’B400’ Operation

Field

Type

Description

reserved

CHAR(1)

This field must be set to X’00".

reserved

CHAR(3)

Not used. This field should be set to hexadecimal zeros (X’000000").

transmit packet
size

BINARY(2)

Specifies the transmit packet size for this connection. The valid values
are 64, 128, 256, 512, and 1024. The value specified must be less than
or equal to the transmit maximum packet size configured for this line.
The special value of X’FFFF” may be specified to use the transmit
default packet size configured for this line.

See “QOLQLIND” on page 2-57 for information on determining the
transmit maximum packet size and the transmit default packet size con-
figured for this line.

transmit window
size

BINARY(2)

Specifies the transmit window size for this connection. The valid values
are as follows:

1-7 When modulus 8 is configured for this line.
1-15 When modulus 128 is configured for this line.
X'FFFF’

See “QOLQLIND"” on page 2-57 for information on determining the
modulus value and the transmit default window size configured for this
line.

Use the transmit default window size configured for this line.

receive packet
size

BINARY(2)

Specifies the receive packet size for this connection. The valid values
are 64, 128, 256, 512, and 1024. The value specified must be less than
or equal to the receive maximum packet size configured for this line.
The special value of X’FFFF’ may be specified to use the receive default
packet size configured for this line.

See “QOLQLIND” on page 2-57 for information on determining the
receive maximum packet size and the receive default packet size con-
figured for this line.

receive window
size

BINARY(2)

Specifies the receive window size for this connection. The valid values
are as follows:

1-7 When modulus 8 is configured for this line.

1-15 When modulus 128 is configured for this line.

X'FFFF’ Use the receive default window size configured for this line.

See “QOLQLIND” on page 2-57 for information on determining the
modulus value and the receive default window size configured for this
line.

reserved

CHAR(32)

Not used. This field should be set to hexadecimal zeros.

2-32 AS/400 System Programmer’s Communications Interface Guide

Table 2-19 (Page 2 of 3). Format of Data for X’B400" Operation

Field

Type

Description

delivery confir-
mation support

CHAR(1)

Specifies if the X.25 delivery confirmation bit (D-bit) should be set on or
off in the call accept packet. This also specifies the D-bit support for
this connection. The valid values are as follows:

X007 Set the D-bit off in the call accept packet. D-bit will be sup-
ported for sending data but not for receiving data.

Note: When this value is selected and an X.25 packet is
received with the D-bit set on, the input/output processor
(IOP) will send a reset packet.

X01’ Set the D-bit on in the call accept packet. D-bit will be sup-
ported for sending data and for receiving data.

reserved

CHAR(11)

Not used. This field should be set to hexadecimal zeros.

X.25 facilities
length

BINARY(1)

Specifies the number of bytes of data in the X.25 facilities field. Any
value between 0 and 109 may be used.

Note: The AS/400 system codes the packet and window size facilities
in this field, if necessary. The total length of all facilities can not
exceed 109 bytes.

X.25 facilities

CHAR(109)

Specifies the X.25 facilities data.

Note: The application programmer should not code the facilities for
packet or window sizes in this field. By doing so, this field could
contain duplicate facilities, which may not be consistently supported by
all X.25 networks.

reserved

CHAR(306)

Not used. This field should be set to hexadecimal zeros.

control informa-
tion

CHAR(1)

Specifies control information for this connection. This is a bit-sensitive
field with bit 0 (leftmost bit) defined for reset support. The remaining
bits are undefined and should be set off ("0’B).

The valid values for bit 0 are as follows:
'0'B Resets are not supported on this connection.

When this value is selected, the X’"BF00” output operation
will not be valid on this connection. Also, a reset indication
packet received on this connection will cause the connection
to be ended.

1B Resets are supported on this connection.

When this value is selected, the X’"BF00” output operation
will be valid on this connection. Also, the user-defined com-
munications application program will be required to handle
reset indications received on this connection.

For example, consider the following values for the control information
field:

X'00’ Resets are not supported on this connection.

X'80’ Resets are supported on this connection.

reserved

CHAR(3)

Not used. This field should be set to hexadecimal zeros.

Chapter 2. User-Defined Communications Support APIs ~ 2-33

Table 2-19 (Page 3 of 3). Format of Data for X’B400’ Operation

Field

Type Description

maximum data
unit assembly
size

BINARY(4) Specifies the maximum number of bytes of user data that can be
received in a complete X.25 packet sequence on this connection. If this
limit is exceeded, the connection will be ended. Any value between
1024 and 32767 may be used.

Notes:

1. If the number of bytes of user data received in a complete X.25
packet sequence is more than can fit into one data unit of the input
buffer, the more data indicator field in the corresponding element of
the input buffer descriptor will be set to X’01” and the remaining
user data will be filled in the next data unit. See “QOLRECV” on
page 2-40 for more information.

2. There is no limitation on the number of bytes of user data that can
be sent in a complete X.25 packet sequence. However, the
QOLSEND program may need to called more than once.

automatic flow
control

BINARY(2) Relates to the amount of data that will be held by user-defined commu-
nications support before sending a receive not ready (RNR) packet to
the sending system. The recommended value for this field is 32, but
any value between 1 and 128 may be used.

Note: A receive ready (RR) packet will be sent when the user-defined
communications application program receives some of the data.

reserved

CHAR(30) Not used. This field should be set to hexadecimal zeros.

X.25 Operation X’"BF00’

This operation is used to send a reset request packet or a reset confirmation
packet on an X.25 SVC or PVC connection. The user-defined communications
application program must provide the X.25 cause and diagnostic codes required
for this operation in the first data unit of the output buffer. The output buffer
descriptor is not used.

Information indicating whether a reset request or reset confirmation packet was
sent will be returned when notification of the completion of the X’"BF00” operation
is received from the QOLRECV program (operation X’BF01’). This information
will be in the diagnostic data parameter of the QOLRECV program. See
“QOLRECV” on page 2-40 for more information.

A reset confirmation packet will be sent under the following conditions:

» after a reset indication packet has been received on the connection and the
user-defined communications application program has received it from the
QOLRECV program (X’B301" operation, 83/3202 return and reason code)

» after a reset indication packet has been received on the connection but
before the user-defined communications application program has received it
from the QOLRECV program

e when a reset indication packet is received on the connection at the same
time the X’BFO0” output operation is issued

This is known as a reset collision. In this case, user-defined communications
support will discard the reset indication and, therefore, the user-defined com-
munications application program will not receive it from the QOLRECV
program. However, the cause and diagnostic codes from the reset indication
will be returned in the diagnostic data parameter of the QOLRECV program

2-34 As/400 System Programmer’s Communications Interface Guide

when notification of the completion of the X’"BFO0” operation is received. See
“QOLRECV” on page 2-40 for more information.

A reset request packet will be sent when none of the above conditions are true.

Notes:

1. Data not yet received by the user-defined communications application
program on a connection will not be deleted when a X’"BF00" operation is
issued on that connection. This data will be received before the notification
of the completion of the X’BFO0” operation is received from the QOLRECV
program {(operation X’"BF01"). Data received after the notification of the com-
pletion of the X’"BF00" operation is received should be treated as new data.

2. The X’BFQO0’ operation is only valid on connections that support resets. See
“X.25 Operation X'B000’” on page 2-25 and “X.25 Operation X'B400"” on
page 2-32 for more information on specifying reset support.

Data Unit Format - X.25 Operation X’"BF00’:

Just the first data unit in the output

buffer is used for this operation. The first byte (offset O from the top of the first
data unit) contains the X.25 cause code. The second byte (offset 1 from the top
of the first data unit) contains the X.25 diagnostic code.

Return and Reason Codes

The return and reason codes that can be returned from the QOLSEND program
depend on the type of communications line the link is using and on the operation

that was requested.

LAN Return and Reason Codes
Return and Reason Codes for LAN Operation X’0000”

Table 2-20 (Page 1 of 2). Return and Reason Codes for LAN Operation X’0000’

Return /

Reason

Code Meaning Recovery

0/0 Operation successful. Continue processing.

80/2200 Data queue error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the user-defined com- in the job log for further information. Then
munications application program when this correct the error, enable the link, and try the
return and reason code is received. request again.

80/2401 Output buffer or output buffer descriptor error Ensure the link is disabled and see messages
detected. Escape message CPF91F1 will be in the job log for further information. Then
sent to the user-defined communications appli- correct the error, enable the link, and try the
cation program when this return and reason request again.
code is received.

80/3002 A previous error occurred on this link that was Ensure the link is disabled and see messages

reported to the user-defined communications
application program by escape message
CPF91F0 or CPF91F1. However, the user-
defined communications application program
has attempted another operation.

in the job log for further information. If
escape message CPF91F0 was sent to the
user-defined communications application
program, then report the problem using the
ANZPRB command. Otherwise, correct the
error, enable the link, and try the request
again.

Chapter 2. User-Defined Communications Support APIs

2-35

Table 2-20 (Page 2 of 2). Return and Reason Codes for LAN Operation X’0000’

(IOP). The diagnostic data parameter will
contain more information on this error.

Return /

Reason

Code Meaning Recovery

80/4000 Error recovery has been canceled for this link. Ensure the link is disabled and see messages
in the job log for further information. Correct
the condition, enable the link, and try the
request again.

80/8000 The amount of user data in a data unit of the Ensure the link is disabled. Correct the error,
output buffer is greater than the maximum enable the link, and try the request again.
frame size allowed on the communications line
the link is using. Escape message CPF91F1
will be sent to the user-defined communica-
tions application program when this return and
reason code is received.

80/9999 Internal system error detected. Escape See messages in the job log for further infor-
message CPF91F0 will be sent to the user- mation. Report the problem using the
defined communications application program ANZPRB command.
when this return and reason code is received.

83/1006 Output operation not valid. Correct the operation parameter. Try the

request again.

83/1007 Connection identifier not valid. Correct the existing provider connection end
point ID parameter. Try the request again.

83/1008 Number of data units not valid. Correct the number of data units parameter.
Try the request again.

83/1998 The amount of data in a data unit of the output Correct the amount of user data, or the total

buffer is not correct. amount of iogicali link controi (LLC) informa-
tion, routing information, and user data in the
offending data unit. Try the request again.

83/1999 Incorrect data in a data unit of the output Correct the incorrect data. Try the request
buffer. The error offset field in the diagnostic again.
data parameter will point to the incorrect data.

83/3001 Link not enabled. Correct the communications handle param-

eter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent
to the data queue. If the link was successfully
enabled, try the request again.

83/4001 Link failure, system starting error recovery for Wait for the link to recover. Try the request

this link. again.

83/4003 Error detected by the input/output processor Correct the error, and try the request again.

2-36 AS/400 System Programmer’s Communications Interface Guide

X.25 Return and Reason Codes
General X.25 Return and Reason Codes: Table 2-21 on page 2-37 shows the
return and reason codes that can be received from the QOLSEND program for

any requested operation.

Table 2-21. Return and Reason Codes Valid for All X.25 Operations

Return /

Reason

Code Meaning Recovery

80/2200 Data queue error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the user-defined com- in the job log for further information. Correct
munications application program when this the error, enable the link, and try the request
return and reason code is received. again.

80/2401 Output buffer or output buffer descriptor error Ensure the link is disabled and see messages
detected. Escape message CPF91F1 will be in the job log for further information. Correct
sent to the user-defined communications appli- the error, enable the link, and try the request
cation program when this return and reason again.
code is received.

80/3002 A previous error occurred on this link that was Ensure the link is disabled and see messages
reported to the user-defined communications in the job log for further information. If
application program by escape message escape message CPF91F0 was sent to the
CPF91F0 or CPF91F1. However, the user- user-defined communications application
defined communications application program program, report the problem using the
has attempted another operation. ANZPRB command. Otherwise, correct the

error, enable the link, and try the request
again.

80/4000 Error recovery has been canceled for this link. Ensure the link is disabled and see messages
in the job log for further information. Correct
the condition, enable the link, and try the
request again.

80/9999 Internal system error detected. Escape See messages in the job log for further infor-
message CPF91F0 will be sent to the user- mation. Report the problem using the
defined communications application program ANZPRB command.
when this return and reason code is received.

83/1006 Output operation not valid. Correct the operation parameter. Try the

request again.

83/3001 Link not enabled. Correct the communications handle param-
eter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent
to the data queue. If the link was successfully
enabled, try the request again.

83/3200 All resources are currently in use by asyn- Wait for at least one of the asynchronous

chronous operations that have not yet com-
pleted.

operations to complete. Notification of com-
pletion of these operations will be received
from the QOLRECV program. Try the request
again.

Return and Reason Codes for X.25 Operation X’0000”

Table 2-22 (Page 1 of 2). Return and Reason Codes for X.25 Operation X’0000’

Return /

Reason

Code Meaning Recovery

0/0 Operation successful. Continue processing.

83/1007 Connection identifier not valid. Correct the existing provider connection end
point ID parameter. Try the request again.

83/1008 Number of data units not valid. Correct the number of data units parameter.

Try the request again.

Chapter 2. User-Defined Communications Support APIs

2-37

Table 2-22 (Page 2 of 2). Return and Reason Codes for X.25 Operation X'0000

Return /

Reason

Code Meaning Recovery

83/1997 The amount of user data in a data unit of the Correct the amount of user data in the
output buffer is not a multiple of the negoti- offending data unit. Try the request again.
ated transmit packet size, and the more data
indicator in the corresponding element of the
output buffer descriptor is set to X"01".

83/1998 The amount of user data in a data unit of the Correct the amount of user data in the
output buffer is not correct. offending data unit. Try the request again.

83/3201 The maximum amount of incoming user data Wait to receive a failure notification from the
that can be held by user-defined communica- QOLRECV program indicating this condition
tions support for the user-defined communica- (X’B301’ operation, 83/3201 return and reason
tions application program on this connection code). Issue the X’B100’ output operation to
has been exceeded. end the connection.

83/3202 A reset indication has been received on this Wait to receive notification from the QOLRECV
connection. The X.25 cause and diagnostic program indicating this condition (X’B301’
code fields in the diagnostic data parameter operation, 83/3202 return and reason code).
will contain the cause and diagnostic codes of Issue the X’BF00” output operation to send a
the reset indication. reset confirmation packet.

83/3205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

83/4001 Link failure, system starting error recovery for Wait to receive a failure notification from the
this link. QOLRECV program indicating this condition

(X’B301” operation, 83/4001 return and reason
code). Issue the X’"B100” output operation to
end the connection.

83/4002 Connection failure. Wait to receive a failure notification from the

QOLRECYV program indicating this condition
(X’B301” operation, 83/4002 return and reason
code). Issue the X’B100” output operation to
end the connection.

Return and Reason Codes for X.25 Operation X’B000’

Table 2-23. Return and Reason Codes for X.25 Operation X’B000’

Return /

Reason

Code Meaning Recovery

0/0 Operation initiated. Wait for notification of the completion of the
X’B000’ operation from the QOLRECV program
(X’B001” operation).

83/4005 All connections are currently in use. Wait for a connection to become available and

try the request again.

2-38 As/400 System Programmer’s Communications Interface Guide

Return and Reason Codes for X.25 Operation X’B100”

Table 2-24. Return and Reason Codes for X.25 Operation X’B100’

Return /

Reason

Code Meaning Recovery

0/0 Operation initiated. Wait for notification of the completion of the
X’B100’ operation from the QOLRECV program
(X’B101” operation). ’

83/1007 Connection identifier not valid. Correct the existing provider connection end
point ID parameter. Try the request again.

83/3205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

Return and Reason Codes for X.25 Operation X’"B400’

Table 2-25. Return and Reason Codes for X.25 Operation X’'B400’

Return /
Reason
Code Meaning Recovery
0/0 Operation successful. Continue processing.
83/1007 Connection identifier not valid. Correct the existing provider connection end
point ID parameter. Try the request again.
83/1999 Incorrect data in a data unit of the output Correct the incorrect data. Try the request
buffer. The error offset field in the diagnostic again.
data parameter will point to the incorrect data.
83/3205 Connection not in a valid state. Ensure the connection is in a valid state for
this operation. Try the request again.
83/4001 Link failure, system starting error recovery for Issue the X’B100’ output operation to end the
this link. connection.
83/4004 Inbound call timed out. Issue the X’B100’ output operation to end the

connection.

Return and Reason Codes for X.25 Operation X’"BF00’

Table 2-26. Return and Reason Codes for X.25 Operation X'BF00’

Return /

Reason

Code Meaning Recovery

0/0 Operation initiated. Wait for notification of the completion of the
X’BF00’ operation from the QOLRECV program
(X’BFO01” operation).

83/1007 Connection identifier not valid. Correct the existing provider connection end
point ID parameter. Try the request again.

83/3205 Connection not in a valid state. Ensure the connection is in a valid state for

this operation. Try the request again.

Chapter 2. User-Defined Communications Support APIs

2-39

QOLRECV

Parameter List

CALL QOLRECV(return code,
reason code,
existing user connection end point ID,
new provider connection end point ID,
operation,
number of data units,
data available,
diagnostic data,
communications handle)

Table 2-27 (Page 1 of 3). QOLRECV Parameter List

Parameter

Use

Type

Description

return code

output

BINARY(4)

Specifies the recovery action to take. See “Return and
Reason Codes” on page 2-52.

reason code

output

BINARY(4)

Specifies the error that occurred. See “Return and Reason
Codes” on page 2-52.

existing user
connection end
point ID

output

BINARY(4)

Specifies the user connection end point (UCEP) ID that the
data was received on. For links using a token-ring or
Ethernet communications line, the content of this param-
eter will always be 1.

For links using an X.25 communications line, the content of
this parameter is only valid when the operation parameter
is X’0001’, X’B001”, X’B101’, X’B301’, or X’BF01". It will
contain the UCEP ID that was provided in the new user
connection end point ID parameter on the call to the
QOLSEND program with operation X’"B000" or X’B400’.

Note: If an incoming X.25 SVC call is rejected by the user-
defined communications application program by calling the
QOLSEND program with operation X’B100’, the content of
this parameter will be set to zero when notification of the
completion of the X’B100” operation is received from the
QOLRECV program (operation X’B101").

new provider
connection end
point ID

output

BINARY(4)

Specifies the provider connection end point (PCEP) ID for
the connection that is to be established. This identifier
must be used on all subsequent calls to the QOLSEND
program for this connection.

The content of this parameter is only valid for links using
an X.25 communications line and when the operation
parameter is X’B201".

2-40 AS/400 System Programmer’s Communications Interface Guide

Table 2-27 (Page 2 of 3). QOLRECV Parameter List

Parameter

Use

Type

Description

operation

output

CHAR(2)

Specifies the type of data received by the user-defined
communications application program. The valid values are
as follows:

X’0001’ User data.
X'B001’ Completion of the X’"B000’ output operation.

This is only valid for links using an X.25 commu-
nications line.

X’B101”7 Completion of the X’"B100” output operation.

This is only valid for links using an X.25 commu-
nications line.

X'B201’ Incoming X.25 switched virtual circuit (SVC) call.

This is only valid for links using an X.25 commu-
nications line.

X'B301’ Connection failure or reset indication received.

This is only valid for links using an X.25 commu-
nications line.

X’BF01” Completion of the X’BF00’ output operation.

This is only valid for links using an X.25 commu-
nications line.

Note: The special value of X’0000” will be returned in the
operation parameter to indicate no data was received from
the QOLRECV program. See “Return and Reason Codes”
on page 2-52 for more information.

number of data
units

output

BINARY(4)

Specifies the number of data units in the input buffer that
contain data. Any value between 1 and the number of data
units created in the input buffer may be returned when the
operation parameter is X’0001’. Otherwise, any value
between 0 and 1 may be returned.

Note: The number of data units created in the input buffer
was returned in the data units created parameter on the
call to the QOLELINK program. See “QOLELINK"” on

page 2-3 for more information.

data available

output

CHAR(1)

Specifies if more data is available for the user-defined
communications application program to receive. The valid
values are as follows:

X'00’ No more data is available for the user-defined
communications application program to receive.

X0t More data is available for the user-defined com-
munications application program to receive.
The QOLRECV program should be called again.

Note: An incoming-data entry will be sent to the data
queue only when the content of this parameter is X’00” and
then more data is subsequently available to be received.
See “Incoming-Data Entry” on page 6-4 for more informa-
tion.

diagnostic data

output

CHAR(40)

Specifies additional diagnostic data. See “Format of Diag-
nostic Data Parameter” on page 2-42 for more information.

The content of this parameter is only valid when the opera-
tion parameter is X’B001’, X’"B101’, X’B301’, or X’"BF01".

Chapter 2. User-Defined Communications Support APls 2-41

Table 2-27 (Page 3 of 3). QOLRECV Parameter List

Parameter

Use

Type

Description

communications
handle

input

CHAR(10)

Specifies the name of the link on which to receive the data.

Format of Diagnostic Data Parameter

The format of the diagnostic data parameter is shown below. The contents of
the fields within this parameter are only valid on X’B001’, X’B101’, X'"B301’, and
X'BFO1” operations for the indicated return and reason codes.

Table 2-28 (Page 1 of 2). Diagnostic Data Parameter

Field Type Description

reserved CHAR(2) Not used.

error code CHAR(4) Specifies hexadecimal diagnostic information that can be used to deter-
mine recovery actions. See “Error Codes” on page 5-11 for more infor-
mation.
The content of this field is only valid for 83/4001 and 83/4002
return/reason codes.

time stamp CHAR(8) Specifies the time the error occurred.
The content of this field is only valid for 83/4001 and 83/4002
return/reason codes.

error log identi- CHAR(4) Specifies the hexadecimal identifier that can be used for locating error

fier information in the error log.
The content of this field is only valid for 83/4001 and 83/4002
return/reason codes.

reserved CHAR(10) Not used.

2-42 AS/400 System Programmer’s Communications Interface Guide

Table 2-28 (Page 2 of 2). Diagnostic Data Parameter

Field Type Description

indicators CHAR(1) Specifies the indicators that the user-defined communications applica-
tion program can use to diagnose a potential error condition. This is a
bit-sensitive field.

The valid values for bit 0 (leftmost bit) are as follows:

'0’'B Either there is no message in the QSYSOPR message queue,
or there is a message and it does not have the capability to
run problem analysis report (PAR) to determine the cause of
the error.

1’B There is a message in the QSYSOPR message queue for this
error, and it does have the capability to run problem anal-
ysis report (PAR) to determine the cause of the error.

The valid values for bit 1 are as follows:

'0'B The line error can be retried.

1’B The line error is not able to be restarted.

The valid values for bit 2 are as follows:

‘0'B The cause and diagnostic codes fields are not valid.
'1’B The cause and diagnostic codes fields are valid.
The valid values for bit 3 are as follows:

'0'B The error has not been reported to the system operator
message queue.

'1’B The error has been reported to the system operator
message queue.

The valid values for bit 4 are as follows:
'0’'B A reset request packet was transmitted on the network

1B A reset confirmation packet was transmitted on the network
instead of a reset request packet.

The content of this field is only valid for operation X’"BF01’
with 00/0000 return/reason codes.

The content of this field is only valid for 83/4001, 83/4002 and 83/3202
return/reason codes, and 00/0000 return/reason codes for operation
X’BFO1".

X.25 cause code CHAR(1) Specifies additional information on the condition reported. See the X.25
Network Guide for interpreting the values of this field.

The content of this field is only valid for 83/4001, 83/4002 and 83/3202
return/reason codes.

X.25 diagnostic CHAR(1) Specifies additional information on the condition reported. See the X.25
code Network Guide for interpreting the values of this field.

The content of this field is only valid for 83/4001, 83/4002 and 83/3202
return/reason codes.

reserved CHAR(1) Not used.

error offset BINARY(4) Specifies the offset from the top of the input buffer to the incorrect data
in the input buffer.

The content of this field is only valid for a 83/1999 return/reason code.

reserved CHAR(4) Not used.

Chapter 2. User-Defined Communications Support APls ~ 2-43

Description of Function
The QOLRECV program is called by a user-defined communications application
program to perform input on a link that is currently enabled in the job in which
the user-defined communications application program is running. The type of
data received is returned in the operation parameter. The data will be returned
in the input buffer that was created when the link was enabled. For X’0001" oper-
ations, a description of that data will also be returned in the input buffer
descriptor that was created when the link was enabled.

The types of data that can be received from the QOLRECV program depend on
the type of communications line the link is using. See “LAN Input Operations”
for more information on the types of data that can be received on links using a
token-ring or Ethernet communications line. See “X.25 SVC and PVC Input
Operations” on page 2-46 for more information on the types of data that can be
received on links using an X.25 communications line.

Note: The QOLRECV program should only be called when the user-defined com-
munications support has data available to be received. This is indicated either
by an incoming-data entry on the data queue or by the data available parameter
on the QOLRECV program.

LAN Input Operations
The only type of data that can be received from the QOLRECV program on links
using a token-ring or Ethernet communications line is user data (operation
X’0001"). User-defined communications support will return the following informa-
tion for each data frame received from the QOLRECV program:

* logical link control (LLC) information, optional routing information, and user
data in the next data unit of the input buffer, starting with the first data unit

* a description, in the corresponding element of the input buffer descriptor, of
the information in that data unit

For example, suppose two data frames came in from the network and the user-
defined communications application program was notified of this by an incoming-
data entry on the data queue. On return from the QOLRECV program, the
information for the first frame would be in the first data unit of the input buffer
and described in the first element of the input buffer descriptor. The information
for the second frame would be in the second data unit of the input buffer and
described in the second element of the input buffer descriptor. The number of
data units parameter would be set to 2.

Data Unit Format - LAN Operation X’0001’: Each data frame received from the
QOLRECV program corresponds to a data unit in the input buffer. The informa-
tion in each of these data units is made up of LLC information, optional routing
data, and user data.

The LLC information starts at offset O from the top of the data unit. The routing
information (if any) starts immediately after the LLC information, and the user
data starts immediately after the routing information. If there isn’t any routing
information, the user data starts immediately after the LLC information.

Table 2-29 on page 2-45 shows the format of the LLC information.

2-44 As/400 System Programmer’s Communications Interface Guide

Table 2-29. Format of the LLC Information

Field Type Description
length of LLC BINARY(2) Specifies the length of the LLC information in the data unit. This will
information always be set to 16.

sending adapter
address

CHAR(6) Specifies, in packed form, the adapter address from which this frame
was sent. The possible values returned in this field depend on the
filters activated for this link. See “QOLSETF” on page 2-10 for more
information.

Note: Because user-defined communications support only allows
connectionless service over LANs, all frames received on a single call
to the QOLRECV program may not have the same source adapter
address.

DSAP address

CHAR(1) Specifies the service access point on which the AS/400 system received
this frame. The possible values returned in this field depend on the
filters activated for this link. See “QOLSETF” on page 2-10 for more
information.

Note: The Ethernet Version 2 standard does not define a DSAP address
in an Ethernet Version 2 frame. Therefore, when receiving Ethernet
Version 2 frames, the DSAP address will be null (X"00).

SSAP address

CHAR(1) Specifies the service access point on which the source system sent this
frame. The possible values returned in this field depend on the filters
activated for this link. See “QOLSETF” on page 2-10 for more informa-
tion.

Note: The Ethernet Version 2 standard does not define a SSAP address
in an Ethernet Version 2 frame. Therefore, when receiving Ethernet
Version 2 frames, the SSAP address will be null (X’00%).

reserved

CHAR(2) Not used.

length of routing
information

BINARY(2) Specifies the length of the routing information in the data unit. For links
using a token-ring communications line, any value between 0 and 18
may be returned, where 0 indicates that there is no routing information.

For links using an Ethernet communications line, the content of this field
is not applicable and will be set to 0 indicating that there is no routing
information.

length of user
data

BINARY(2) Specifies the length of the user data in the data unit. This will be less
than or equal to the maximum frame size allowed on the service access
point returned in the DSAP address field. See “QOLQLIND” on

page 2-57 to determine the maximum frame size allowed on the service
access point returned in the DSAP address field.

For Ethernet Version 2 frames, this will be at least 48 and not more
than 1502 (including 2 bytes for the Ethernet type field).

Note: Ethernet 802.3 frames will be padded when the user data is less
than 48 bytes.

Input Buffer Descriptor Element Format - LAN Operation X’0001”: The informa-
tion returned in each data unit of the input buffer will be described in the corre-
sponding element of the input buffer descriptor.

Table 2-30 on page 2-46 shows the format of each element in the input buffer
descriptor.

Chapter 2. User-Defined Communications Support APls ~ 2-45

Table 2-30. Format of an Element in the Input Buffer Descriptor

Field Type Description

length BINARY(2) Specifies the number of bytes of information in the corresponding data
unit of the input buffer. This will be equal to the length of the LLC infor-
mation plus the length of the routing information plus the length of the
user data specified in Table 2-29.

reserved CHAR(30) Not used.

X.25 SVC and PVC Input Operations

Table 2-31 shows the types of data that can be received from the QOLRECV
program on links using an X.25 communications line.

Table 2-31. X.25 SVC and PVC Input Operations

Operation Meaning

X"0001" User data (SVC or PVC).

X’B001” Completion of the X’B000” output operation (SVC or PVC).
X'B101” Completion of the X’B100” output operation (SVC or PVC).
X’B201’ Incoming X.25 call (SVC).

X'B301’ Connection failure or reset indication (SVC or PVC).
X'BF01’ Compiletion of the X’"BF00” output operation (SVC or PVC).

X.25 Operation X’0001”

This operation indicates that user data was received on an X.25 SVC or PVC con-
nection. User-defined communications support will return the following informa-
tion:

* user data in the next data unit of the input buffer, starting with the first data
unit

* a description, in the corresponding element of the input buffer descriptor, of
the user data in that data unit

For example, suppose two data units of user data came in from the network and
the user-defined communications application program was notified of this by an
incoming-data entry on the data queue. On return from the QOLRECV program,
the first portion of the user data would be in the first data unit of the input buffer
and described in the first element of the input buffer descriptor. The second
portion of the user data would be in the second data unit of the input buffer and
described in the second element of the input buffer descriptor. The number of
data units parameter would be set to 2.

User-defined communications support will automatically reassemble the X.25
data packet(s) from a complete packet sequence into the next data unit of the
input buffer. If the amount of user data in a complete packet sequence is more
than what can fit into a data unit, the more data indicator field in the corre-
sponding element of the input buffer descriptor will be set to X’01” and the next
data unit will be used for the remaining user data, and so on.

Data Unit Format - X.25 Operation X’0001”: Each data unit in the input buffer
consists solely of user data and starts offset O from the top of the data unit.

2-46 AS/400 System Programmer’s Communications Interface Guide

Input Buffer Descriptor Element Format - X.25 Operation X’0001": The user data
returned in each data unit of the input buffer will be described in the corre-
sponding element of the input buffer descriptor.

Table 2-32 shows the format of each element in the input buffer descriptor.

Table 2-32. Format of an Element in the Input Buffer Descriptor

Field

Type

Description

length

BINARY(2)

Specifies the number of bytes of user data in the corresponding data
unit of the input buffer. This will always be less than or equal to the
X.25 user data size parameter that was specified on the call to the
QOLELINK program when the link was enabled. See “QOLELINK” on
page 2-3 for more information.

Note: The maximum amount of user data in a data unit of the input
buffer may be further limited by the maximum data unit assembly size
for a connection. See “QOLSEND” on page 2-17 for more information.

more data indi-
cator

CHAR(1)

Specifies if the remaining amount of user data from a complete X.25
packet sequence is more than can fit into the corresponding data unit.
The valid values are as follows:

X'00’ The remaining amount of user data from a complete X.25
packet sequence fit into the corresponding data unit.

X 01 The remaining amount of user data from a complete X.25
packet sequence could not all fit into the corresponding data
unit. The next data unit will be used.

qualified data
indicator

CHAR(1)

Specifies if the X.25 qualifier bit (Q-bit) was set on or off in all X.25
packets reassembled into the corresponding data unit. The valid values
are as follows:

X'00’ The Q-bit was set off in all X.25 packets reassembled into
the corresponding data unit.

X'01 The Q-bit was set on in all X.25 packets reassembled into
the corresponding data unit.

interrupt packet
indicator

CHAR(1)

Specifies if the user data in the corresponding data unit was received in
an X.25 interrupt packet. The valid values are as follows:

X'00’ The user data in the corresponding data unit was received
in one or more data packets.

X'01’ The user data in the corresponding data unit was received
in an X.25 interrupt packet.

delivery confir-
mation indicator

CHAR(1)

Specifies if the X.25 delivery confirmation bit (D-bit) was set on or off in
all X.25 packets reassembled into the corresponding data unit. The
valid values are as follows:

X'00’ The D-bit was set off in all X.25 packets reassembled into
the corresponding data unit.

X01’ The D-bit was set on in all X.25 packets reassembled into
the corresponding data unit.

Note: A packet-level confirmation is sent by the
input/output processor (IOP) when a packet is received with
the X.25 D-bit set on.

reserved

CHAR(26)

Not used.

Chapter 2. User-Defined Communications Support APls 2-47

X.25 Operation X’"B001’

This operation indicates that a X’"B000” output operation has completed. User-
defined communications support will return the data for this operation (if any) in
the first data unit of the input buffer. The input buffer descriptor is not used.

Data will be returned in the input buffer for the following return and reason
codes:

¢ 0/0
e 83/1999
e 83/4002 (only when the number of data units parameter is set to one)

The format of the data returned in the input buffer for the X’"B001” operation
depends on whether the X'B000” output operation was used to initiate an SVC
call or to open a PVC connection. Each format will be explained below.

Note: The formats below only apply to 0/0 and 83/4002 return and reason codes.
When the X’"B001" operation is received with a 83/1999 return and reason code,
the data returned starts at offset 0 from the top of the first data unit in the input
buffer and contains the data specified in the output buffer on the X’"B0O00” output
operation. See “QOLSEND” on page 2-17 for more information.

Data Unit Format - X.25 Operation X’B001” (Completion of SVC Call): The data
returned starts at offset O from the top of the first data unit in the input buffer.

Table 2-33 shows the format of the data returned for the X’"B001” operation.

Table 2-33 (Page 1 of 2). Format of Data for X’B001’ Operation (Completion of SVC Call)

Field Type Description

reserved CHAR(2) Not used.

logical channel CHAR(2) Specifies the logical channel identifier assigned to the SVC connection.

identifier Note: The content of this field is only valid for a 0/0 return and reason
code.

transmit packet BINARY(2) Specifies the negotiated transmit packet size for this connection.

size Note: The content of this field is only valid for a 0/0 return and reason
code.

transmit window BINARY(2) Specifies the negotiated transmit window size for this connection.

size Note: The content of this field is only valid for a 0/0 return and reason
code.

receive packet BINARY(2) Specifies the negotiated receive packet size for this connection.

size Note: The content of this field is only valid for a 0/0 return and reason
code.

receive window BINARY(2) Specifies the negotiated receive window size for this connection.

size Note: The content of this field is only valid for a 0/0 return and reason
code.

reserved CHAR(32) Not used.

2-48 AS/400 System Programmer’s Communications Interface Guide

Table 2-33 (Page 2 of 2). Format of Data for X’B001" Operation (Completion of SVC Call)

Field Type Description
delivery confir- CHAR(1) Specifies if the X.25 delivery confirmation bit (D-bit) was set on or off in
mation support the call connected packet. This also specifies the D-bit support for this
connection. The valid values are as follows:
X'00’ The D-bit was set off in the call connected packet. D-bit will
be supported for sending data but not for receiving data.
Note: When this value is returned and an X.25 packet is
received with the D-bit set on, the input/output processor
(IOP) will send a reset packet.
X'01 The D-bit was set on in the call connected packet. D-bit will
be supported for sending data and for receiving data.
Note: The content of this field is only valid for a 0/0 return and reason
code.
reserved CHAR(11) Not used.
X.25 facilities BINARY(1) Specifies the number of bytes of data in the X.25 facilities field. Any
length value between 0 and 109 may be returned.
X.25 facilities CHAR(108) Specifies the X.25 facilities data.
reserved CHAR(48) Not used.
call/clear user BINARY(2) Specifies the number of bytes of data in the call/clear user data field.
data length Any value between 0 and 128 may be returned.
call/clear user CHAR(128) For a 0/0 return and reason code, this specifies the call user data. For
data an 83/4002 return and reason code, this specifies the clear user data.
reserved CHAR(168) Not used

Data Unit Format - X.25 Operation X’B001” (Completion of Open PVC): The data
returned starts at offset O from the top of the first data unit in the input buffer.

Table 2-34 shows the format of the data returned for the X"B001" operation.

Table 2-34. Format of Data for X’B001’ Operation (Completion of Open PVC)

Field Type Description

reserved CHAR(4) Not used.

transmit packet BINARY(2) Specifies the negotiated transmit packet size for this connection.

size Note: This will be the same as the requested transmit packet size
specified on the X"B000’ output operation.

transmit window BINARY(2) Specifies the negotiated transmit window size for this connection.

size Note: This will be the same as the requested transmit window size
specified on the X’B000’ output operation.

receive packet BINARY(2) Specifies the negotiated receive packet size for this connection.

size Note: This will be the same as the requested receive packet size spec-
ified on the X’"B000” output operation.

receive window BINARY(2) Specifies the negotiated receive window size for this connection.

size Note: This will be the same as the requested receive window size
specified on the X’B000” output operation.

reserved CHAR(500) Not used.

Chapter 2. User-Defined Communications Support APlIs 2-49

X.25 Operation X’B101’

This operation indicates that a X’"B100" output operation has completed. User-
defined communications support will return the data for this operation (if any) in
the first data unit of the input buffer. The input buffer descriptor is not used.

Data will be returned in the input buffer for the following return and reason
codes:

¢ 0/0 {only when the number of data units parameter is set to one)
* 83/1999

Note: The format below only applies for a 0/0 return and reason code. When
the X'B101" operation is received with an 83/1999 return and reason code, the
data returned starts at offset O from the top of the first data unit in the input
buffer and contains the data specified in the output buffer on the X’"B100” output
operation. See “QOLSEND” on page 2-17 for more information.

Data Unit Format - X.25 Operation X’"B101’: The data returned starts at offset 0
from the top of the first data unit in the input buffer.

Table 2-35 shows the format of the data returned for the X’"B101" operation.

Table 2-35. Format of Data for X’B101’ Operation

Field Type Description
clear type CHAR(2) Specifies the type of clear user data returned. The valid values are as
follows: v
X’'0001’ Clear confirmation data included.
X’0002’ Clear indication data included.
cause code CHAR(1) Specifies the X.25 cause code.
diagnostic code CHAR(1) Specifies the X.25 diagnostic code.
reserved CHAR(4) Not used.
X.25 facilities BINARY(1) Specifies the number of bytes of data in the X.25 facilities field. Any
length value bétween 0 and 109 may be returned.
X.25 facilities CHAR(109) Specifies the X.25 facilities data.
reserved CHAR(48) Not used.
clear user data BINARY(2) Specifies the number of bytes of data in the clear user data field. Any
length value between 0 and 128 may be returned.
clear user data CHAR(128) Specifies the clear user data.
reserved CHAR(216) Not used.

X.25 Operation X’B201’

This operation indicates that an incoming X.25 SVC call was received. User-
defined communications support will return the data for this operation in the first
data unit of the input buffer. The input buffer descriptor is not used.

Note: It is the responsibility of the user-defined communications application
program to either accept or reject the incoming call. This is done by calling the
QOLSEND program with operation X’B400” or X’B100’, respectively.

2-50 As/400 System Programmer’s Communications Interface Guide

Data Unit Format - X.25 Operation X’B201’: The data returned starts at offset 0
from the top of the first data unit in the input buffer.

Table 2-36 shows the format of the data returned for the X’"B201” operation.

Table 2-36. Format of Data for X’B201’ Operation

Field Type Description
reserved CHAR(2) Not used.
logical channel CHAR(2) Specifies the logical channel identifier assigned to the incoming SVC
identifier call.
transmit packet BINARY(2) Specifies the requested transmit packet size for this connection.
size
transmit window BINARY(2) Specifies the requested transmit window size for this connection.
size
receive packet BINARY(2) Specifies the requested receive packet size for this connection.
size
receive window BINARY(2) Specifies the requested receive window size for this connection.
size
reserved CHAR(7) Not used.
Calling DTE BINARY(1) Specifies the number of binary coded decimal (BCD) digits in the calling
address length DTE address.
Calling DTE CHAR(16) Specifies, in binary coded decimal (BCD), the calling DTE address. The
address address will be left justified and padded on the right with BCD zeros.
reserved CHAR(8) Not used.
delivery confir- CHAR(1) Specifies if the X.25 delivery confirmation bit (D-bit) was set on or off in
mation support the incoming call packet. The valid values are as follows:
X007 The D-bit was set off in the incoming call packet.
X0 The D-bit was set on in the incoming call packet.
reserved CHAR(9) Not used.
reverse charging CHAR(1) Specifies reverse charging options. The valid values are as follows:
indicator X'00’ Reverse charging not requested.
X'01’ Reverse charging requested.
fast select indi- CHAR(1) Specifies fast select options. The valid values are as follows:
cator X' 00 Fast select not requested.
X'01’ Fast select with restriction requested.
X'02 Fast select without restriction requested.
X.25 facilities BINARY(1) Specifies the number of bytes of data in the X.25 facilities field. Any
length value between 0 and 109 may be returned.
X.25 facilities CHAR(109) Specifies the X.25 facilities data.
reserved CHAR(48) Not used.
call user data BINARY(2) Specifies the number of bytes of data in the call user data field. Any
length value between 0 and 128 may be returned.
call user data CHAR(128) Specifies the call user data.
Note: The AS/400 system treats the first byte of call user data as the
protocol identifier (PID).
reserved CHAR(168) Not used.

Chapter 2. User-Defined Communications Support APIs 2-51

X.25 Operation X’"B301’

This operation indicates that a failure has occurred, or a reset indication has
been received, on an X.25 SVC or PVC connection. User-defined communica-
tions support will return data for this operation in the first data unit of the input
buffer only on a 83/4002 return and reason code when the number of data units
parameter is set to one. The input buffer descriptor is not used.

Note: The diagnostic data parameter will contain the X.25 cause and diagnostic
codes when a reset indication is received.

Data Unit Format - X.25 Operation X’B301”: The data returned starts at offset 0
from the top of the first data unit in the input buffer.

Table 2-37 shows the format of the data returned for the X’"B301” operation.

Table 2-37. Format of Data for X'B301’ Operation

Field Type Description
reserved CHAR(8) Not used.
X.25 facilities BINARY(1) Specifies the number of bytes of data in the X.25 facilities field. Any
length value between 0 and 109 may be returned.
X.25 facilities CHAR(109) Specifies the X.25 facilities data.
reserved CHAR(48) Not used.
. clear user data BINARY(2) Specifies the number of bytes of data in the clear user data field. Any
length value between 0 and 128 may be returned.
clear user data CHAR(128) Specifies the clear user data.
reserved CHAR(216) Not used.

X.25 Operation X’"BF01’
This operation indicates that a X’"BF00” output operation has been completed.
Neither the input buffer nor the input buffer descriptor is used for this operation.

Note: When the X’"BF01” operation is received with a 0/0 return and reason
code, the diagnostic data parameter will contain information indicating if a reset
request or reset confirmation packet was sent.

Return and Reason Codes

The return and reason codes that can be returned from the QOLRECV program
depend on the type of communications line the link is using and on the type of
data (operation) that was received.

LAN Return and Reason Codes

Return and Reason Codes Indicating No Data Received: Table 2-38 on

page 2-53 shows the return and reason codes that indicate data could not be
received from the QOLRECV program.

Note: When these return and reason codes are returned, all output parameters
except the return and reason codes will contain hexadecimal zeros.

2-52 AS/400 System Programmer’s Communications Interface Guide

Table 2-38. Return and Reason Codes Indicating No Data Received

Return /

Reason

Code Meaning Recovery

0/3203 No data available to be received. Ensure that user-defined communications
support has data available to be received
before calling the QOLRECV program. Try the
request again.

80/2200 Data queue error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the user-defined com- in the job log for further information. Correct
munications application program when this the error, enable the link, and try the request
return and reason code is received. again.

80/2401 Input buffer or input buffer descriptor error Ensure the link is disabled and see messages
detected. Escape message CPF91F1 will be in the job log for further information. Correct
sent to the user-defined communications appli- the error, enable the link, and try the request
cation program when this return and reason again.
code is received.

80/3002 A previous error occurred on this link that was Ensure the link is disabled and see messages
reported to the user-defined communications in the job log for further information. If
application program by escape message escape message CPF91F0 was sent to the
CPF91F0 or CPF91F1. However, the user- user-defined communications application
defined communications application program program, then report the problem using the
has attempted another operation. ANZPRB command. Otherwise, correct the

error, enable the link, and try the request
again.

80/4000 Error recovery has been canceled for this link. Ensure the link is disabled and see messages
in the job log for further information. Correct
the condition, enable the link, and try the
request again.

80/9999 Internal system error detected. Escape See messages in the job log for further infor-

: message CPF91F0 will be sent to the user- mation. Report the problem using the
defined communications application program ANZPRB command.
when this return and reason code is received.

83/3001 Link not enabled. Correct the communications handle param-
eter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent

to the data queue. If the link was successfully
enabled, try the request again.

Return and Reason Codes for LAN Operation X’0001”

Table 2-39. Return and Reason Codes for LAN Operation X’0001’

Return /

Reason

Code Meaning Recovery

0/0 User data received successfully. Continue processing.

Chapter 2. User-Defined Communications Support APIs

2-53

X.25 Return and Reason Codes
Return and Reason Codes Indicating No Data Received: Table 2-40 shows the
return and reason codes that indicate data could not be received from the

QOLRECYV program.

Note: When these return and reason codes are returned, all output parameters
except the return and reason codes will contain hexadecimal zeros.

Table 2-40. Return and Reason Codes Indicating No Data Received

Return /

Reason

Code Meaning Recovery

0/3203 No data available to be received. Ensure that user-defined communications
support has data available to be received
before calling the QOLRECV program. Try the
request again.

80/2200 Data queue error detected. Escape message Ensure the link is disabled and see messages
CPF91F1 will be sent to the user-defined com- in the job log for further information. Correct
munications application program when this the error, enable the link, and try the request
return and reason code is received. again.

80/2401 Input buffer or input buffer descriptor error Ensure the link is disabled and see messages
detected. Escape message CPF91F1 will be in the job log for further information. Correct
sent to the user-defined communications appli- the error, enable the link, and try the request
cation program when this return and reason again.
code is received.

80/3002 A previous error occurred on this link that was Ensure the link is disabled and see messages
reported to the user-defined communications in the job log for further information. If
application program by escape message escape message CPF91F0 was sent to the
CPF91F0 or CPF91F1. However, the user- user-defined communications application
defined communications application program program, then report the problem using the
has attempted another operation. ANZPRB command. Otherwise, correct the

error, enable the link, and try the request
again.

80/4000 Error recovery has been canceled for this link. Ensure the link is disabled and see messages
in the job log for further information. Correct
the condition, enable the link, and try the
request again.

80/9999 Internal system error detected. Escape See messages in the job log for further infor-
message CPF91F0 will be sent to the user- mation. Report the problem using the
defined communications application program ANZPRB command.
when this return and reason code is received.

83/3001 Link not enabled. Correct the communications handle param-

eter. Try the request again.

83/3004 Link is enabling. Wait for the enable-complete entry to be sent

to the data queue. If the link was successfully
enabled, try the request again.

Return and Reason Codes for X.25 Operation X’0001”

Table 2-41. Return and Reason Codes for X.25 Operation X’0001’

Return /

Reason

Code Meaning Recovery

0/0 User data received successfully. Continue processing.

2-54 As/400 System Programmer’s Communications Interface Guide

Return and Reason Codes for X.25 Operation X’B001”

Table 2-42. Return and Reason Codes for X.25 Operation X'B001’

Return /

Reason

Code Meaning Recovery

0/0 The X’B000” output operation was successful. Continue processing.

83/1999 Incorrect data was specified in output buffer Correct the incorrect data. Then, try the
when the X’B000’ output operation was issued. X’B000’ output operation again.
Note: The data specified in the output buffer
will be copied into the input buffer and the
error offset field in the diagnostic data param-
eter will point to the incorrect data.

83/3204 Connection ending because a X’B100” output Wait for notification of the completion of the
operation was issued. X’B100’ output operation from the QOLRECV

program (X’B101’ operation).

83/4001 Link failure, system starting error recovery for Wait for the link to recover. Then, try the
this link. The connection has ended. X’B000’ output operation again.

83/4002 Connection failure. The connection has ended. Correct any errors and try the X’"B000’ output
The diagnostic data parameter will contain operation again.
more information on this error.

83/4005 All SVC channels are currently in use, or the Wait for a virtual circuit to become available.

requested PVC channel is already in use.

Then, try the X’B000’ output operation again.

Return and Reason Codes for X.25 Operation X’B101”

Table 2-43. Return and Reason Codes for X.25 Operation X'B101’

Return /
Reason
Code Meaning Recovery
0/0 The X’B100’ output operation was successful. Continue processing.
The connection has ended.
83/1007 Connection identifier not valid because con- Continue processing.
nection has already ended.
83/1999 Incorrect data was specified in output buffer Correct the incorrect data. Then, try the

when the X’B100” output operation was issued.

Note: The data specified in the output buffer
will be copied into the input buffer and the
error offset field in the diagnostic data param-
eter will point to the incorrect data.

X’B100’ output operation again.

Return and Reason Codes for X.25 Operation X’"B201”

Table 2-44. Return and Reason Codes for X.25 Operation X'B201’

Return /

Reason

Code Meaning Recovery

0/0 Incoming X.25 SVC call received successfully. Continue processing.

Chapter 2. User-Defined Communications Support APls

2-55

Return and Reason Codes for X.25 Operation X’"B301’

Table 2-45. Return and Reason Codes for X.25 Operation X’B301’

Return /

Reason.

Code Meaning Recovery

83/3201 The maximum amount of incoming user data Issue the X’B100’ output operation to end the
that can be held by user-defined communica- connection.
tions support for the user-defined communica-
tions application program on this connection
has been exceeded.

83/3202 A reset indication has been received on this Issue the X’BF00” output operation to send a
connection. The X.25 cause and diagnhostic reset confirmation packet.
code fields in the diagnostic data parameter
will contain the cause and diagnostic codes of
the reset indication.

83/4001 Link failure, system starting error recovery for Issue the X’B100” output operation to end the
this link. connection.

83/4002 Connection failure. The diagnostic data Issue the X’"B100” output operation to end the

parameter will contain more information on
this error.

connection.

Return and Reason Codes for X.25 Operation X’BF01’

Table 2-46. Return and Reason Codes for X.25 Operation X'BF01

Return /
Reason
Code Meaning Recovery
0/0 The X’BF00” output operation was successful. Continue processing.
The diagnostic data parameter will contain
information indicating if a reset request or
reset confirmation packet was sent.
83/1006 Operation not valid. Do not issue the X’"BF00” output operation on
connections that do not support resets.
83/3201 The maximum amount of incoming user data Wait to receive a failure notification from the
that can be held by user-defined communica- QOLRECYV program indicating this condition
tions support for the user-defined communica- (X’B301" operation, 83/3201 return and reason
tions application program on this connection code). Then, issue the X’B100’ output opera-
has been exceeded. tion to end the connection.
83/3204 Connection ending because a X’B100” output Wait for notification of the completion of the
operation was issued. X’B100” output operation from the QOLRECV
program (X'B101” operation).
83/4001 Link failure, system starting error recovery for Wait to receive a failure notification from the
this link. QOLRECYV program indicating this condition
(X’B301” operation, 83/4001 return and reason
code). Then, issue the X’B100” output opera-
tion to end the connection.
83/4002 Connection failure. Wait to receive a failure notification from the

QOLRECYV program indicating this condition
(X’B301” operation, 83/4002 return and reason
code). Then, issue the X’B100” output opera-
tion to end the connection.

2-56 AS/400 System Programmer’s Communications Interface Guide

QOLQLIND

CALL QOLQLIND(return code,
reason code,
number of bytes,
user buffer,
line description,

format)
Parameter List

Table 2-47. QOLQLIND Parameter List

Parameter Use Type Description

return code output BINARY(4) Specifies the recovery action to take. See “Return and
Reason Codes” on page 2-60.

reason code output BINARY(4) Specifies the error that occurred. See “Return and Reason
Codes” on page 2-60.

number of bytes output BINARY(4) Specifies the number of bytes of data returned in the user
buffer.

user buffer output CHAR(256) Specifies the buffer where the data from the query will be
received. Any unused space in the buffer will be filled with
X’00°.

line description input CHAR(10) Specifies the name of the line description to query. An
existing token-ring, Ethernet or X.25 line description must
be used.

format input CHAR(1) Specifies the format of the data returned in the user buffer.
The valid values are as follows:
X'01’ Use format X’01’.
See “Format of Data in the User Buffer” for more informa-
tion.

~ Description of Function

The QOLQLIND program is called by a user-defined communications application
program to query an existing token-ring, Ethernet, or X.25 line description. The
data received from the query will be placed in the user buffer parameter.

The line description to be queried need not be associated with any links the
user-defined communications application program may have enabled. However,
data in the line description may change after it is queried.

Format of Data in the User Buffer

The data received in the user buffer from the query is made up of two parts. The
first portion starts at offset 0 from the top of the user buffer and contains general
query data. The format of this data does not depend on value of the format
parameter supplied to the QOLQLIND program.

Chapter 2. User-Defined Communications Support APls ~ 2-57

Table 2-48. General Query Data

Field

Type

Description

line description

CHAR(10)

Specifies the name of the token-ring, Ethernet or X.25 line description
that was queried.

line type

CHAR(1)

Specifies the type of line description that was queried. The valid values
are as follows:

X' 04’ X.25
X' 05’ Token-ring
X'09 Ethernet

status

CHAR(1)

Specifies the current status of the line description. The valid values are
as follows:

X 00 Varied off

X011 Varied off pending
X'02 Varied on pending
X'03 Varied on

X004 Active

X'05’ Connect pending
X'06’ Recovery pending
X7 Recovery canceled
X'08’ Failed

X'09 Diagnostic mode
X'FF’ Unknown

The second portion of the user buffer starts immediately after the general query
data and contains data specific to the type of line description that was queried.
The format of this data depends on the value of the format parameter supplied to
the QOLQLIND program.

Token-Ring/Ethernet Specific Data - Format X’01

Table 2-49 (Page 1 of 2). LAN Specific Data - Format X’01’

Field Type Description
local adapter CHAR(6) Specifies, in packed form, the local adapter address of this line. The
address special value of X’000000000000" indicates that the preset default
address for the adapter card was configured. However, the line
description must be varied on before this address can be retrieved.
line speed CHAR(1) Specifies the speed of this line. The valid values are as follows:
X01 4 megabits/second
X02 10 megabits/second
X03’ 16 megabits/second
line capability CHAR(1) Specifies the capability of this line. The valid values are as follows:
X'00’ Token-ring
X011 Ethernet Version 2
X02 Ethernet 802.3
X'03’ Both Ethernet Version 2 and Ethernet 802.3
line frame size BINARY(2) Specifies the maximum frame size possible on this line.
Ethernet Version BINARY(2) Specifies the maximum size for Ethernet Version 2 frames. This will be
2 frame size 1502 if the line is capable of Ethernet Version 2 traffic. Otherwise, it will
be zero.
number of BINARY(2) Specifies the number of source service access points (SSAPs) config-
SSAPs ured for this line.

Note: The following 3 rows are repeated for each SSAP configured for this line.

2-58 As/400 System Programmer’s Communications Interface Guide

Table 2-49 (Page 2 of 2). LAN Specific Data - Format X'01’

Field Type Description _
SSAP CHAR(1) Specifies the configured source service access point.
SSAP type CHAR(1) Specifies the SSAP type. The valid values are as follows:
X'00’ Non-SNA SSAP
X011 SNA SSAP
SSAP frame size BINARY(2) Specifies the maximum frame size allowed on this SSAP.
number of group BINARY(2) Specifies the number of group addresses configured for this line.

addresses.

Note: This will always be zero for a token-ring line description.

Note: The following row is repeated for each group address configured for this line.

group address

CHAR(6)

Specifies a group address, in packed form.

X.25 Specific Data - Format X’ 01

Table 2-50 (Page 1 of 2). X.25 Specific Data - Format X'01’

Field Type Description
local network CHAR(1) Specifies, in hexadecimal, the number of binary coded decimal (BCD)
address length digits in the local network address.
local network CHAR(9) Specifies, in BCD, the local network address of this line.
address
extended CHAR(1) Specifies whether network addressing is extended to permit the use of
network 17 digits in an address. The valid values are as follows:
addressing X'01’ Network addresses may be up to 15 digits
X02’ Network addresses may be up to 17 digits
address CHAR(1) Specifies if the system inserts the local network address in call request
insertion and call accept packets. The valid values are as follows:
'y’ The local network address is inserted in call request and call
accept packets.
‘N’ The local network address is not inserted in call request and
call accept packets.
modulus CHAR(1) Specifies the X.25 modulus value. The valid values are as follows:
X'01’ Modulus 8
X'02' Modulus 128
X.25 DCE CHAR(1) Specifies if the system communicates through the X.25 DCE support.
support This allows the system to communicate with another system without
going through an X.25 network. The valid values are as follows:
X001 The system does not communicate via the X.25 DCE support
X'02' The system does communicate via the X.25 DCE support
transmit BINARY(2) Specifies the transmit maximum packet size configured for this line.
maximum packet
size
receive BINARY(2) Specifies the receive maximum packet size configured for this line.
maximum packet
size
transmit default BINARY(2) Specifies the transmit default packet size configured for this line.
packet size
receive default BINARY(2) Specifies the receive default packet size configured for this line.

packet size

Chapter 2. User-Defined Communications Support APls ~ 2-59

Table 2-50 (Page 2 of 2). X.25 Specific Data - Format X'01

Field Type Description

transmit default BINARY(1) Specifies the transmit default window size configured for this line.
window size

receive default BINARY(1) Specifies the receive default window size configured for this line.
window size

number of BINARY(2) Specifies the number of logical channels configured for this line.

logical channels

Note: The following 4 rows are repeated for each logical channel configured for this line

logical channel CHAR(1) Specifies the logical channel group number. This together with the
group number logical channel number makes up the logical channel identifier.
logical channel CHAR(1) Specifies the logical channel number. This together with the logical
number channel group number makes up the logical channel identifier.
logical channel CHAR(1) Specifies the logical channel type. The valid values are as follows:
type X'01’ Switched virtual circuit (SVC).

X'02 Permanent virtual circuit (PVC) that is eligible for use by a

network controller.

Note: This does not necessarily mean that this PVC is avail-
able for use. Another job running on the network controller
attached to this line may already have this PVC in use.

X'22’ PVC that is not eligible for use by a network controller. For
example, a PVC that is already attached to an asynchronous
controller description.

logical channel CHAR(1) Specifies the direction of calls allowed on the logical channel. The valid
direction values are as follows:
X007 Not applicable (PVC logical channel).
X011 Only incoming calls are allowed on this logical channel.
X'02 Only outgoing calls are allowed on this logical channel.
X'03 Both incoming and outgoing calls are allowed on this logical
channel.

Return and Reason Codes

Table 2-51 (Page 1 of 2). Return and Reason Codes for QOLQLIND

Return /

Reason

Code Meaning Recovery

0/0 Operation successful. Continue processing.

81/9999 Internal system error detected. Escape See messages in the job log for further infor-
message CPF91F0 will be sent to the user- mation. Report the problem using the
defined communications application program ANZPRB command.
when this return and reason code is received.

83/1005 Format not valid. Correct the format parameter. Try the

request again.

83/1998 User buffer parameter too small. Correct the user buffer parameter. Try the

request again.

83/2000 Line description not configured for token-ring, Correct the line description parameter. Try
Ethernet, or X.25. the request again.

2-60 AS/400 System Programmer’s Communications Interface Guide

Table 2-51 (Page 2 of 2). Return and Reason Codes for QOLQLIND

Return /

Reason

Code Meaning Recovery

83/2002 Not authorized to line description. Get authorization to the line description. Try
the request again.

83/2006 Line description not found. Correct the line description parameter. Try
the request again.

83/2007 Line description damaged. Delete and recreate the line description. Try
the request again.

Chapter 2. User-Defined Communications Support APIs 2-61

QOLTIMER

Parameter List

CALL QOLTIMER(return code,

reason code,
timer set,

timer to cancel,
gqueue name,
operation,
interval,
establish count,
key length,

key value,

user data)

Table 2-52 (Page 1 of 2). QOLTIMER Parameter List

Parameter

Use

Type

Description

return code

output

BINARY(4)

Specifies the recovery action to take. See “Return and
Reason Codes” on page 2-64.

reason code

output

BINARY(4)

Specifies the error that occurred. See “Return and Reason
Codes” on page 2-64.

timer set

output

CHAR(8)

Specifies the name of the timer (timer handle) that was set.
TIMEROO1, TIMERO0O02, ... , TIMER128 are the possible
values.

The content of this parameter is only valid when setting a
timer.

timer to cancel

input

CHAR(8)

Specifies the name of the timer (timer handle) to cancel.
TIMEROO1, TIMEROO2, ..., TIMER128 may be used as
values. The special value of *ALL (left-justified and padded
on right with spaces) may be used to cancel all timers cur-
rently set in the job in which the user-defined communica-
tions application program is running.

The content of this parameter is only valid when canceling
a timer.

queue name

input

CHAR(20)

Specifies the name and library of the data queue where the
timer-expired entry will be sent when the timer expires.
The first 10 characters specify the hame of the data queue
and the second 10 characters specify the library in which
the data queue is located. Both entries are left-justified.
The special values of *LIBL and *CURLIB may be used for
the library name.

The content of this parameter is only valid when setting a
timer.

operation

input

CHAR(1)

Specifies the timer operation to perform. The valid values
are as follows:

X0t Set a timer.

X'02’ Cancel a timer.

2-62 AS/400 System Programmer’s Communications Interface Guide

Table 2-52 (Page 2 of 2). QOLTIMER Parameter List

Parameter Use Type Description

interval input BINARY(4) Specifies the number of milliseconds for which to set this
timer. Any value between 1,048 and 3,600,000 may be
used.

The content of this parameter is only valid when setting a
timer.

establish count input BINARY(4) Specifies the number of times this timer will be estab-
lished. Any value between 1 and 60 may be used. The
special value of -1 may be used to always have this timer
established after it expires.

The content of this parameter is only valid when setting a
timer.

key length input BINARY(4) Specifies the key length when using a keyed data queue.
Any value between 0 and 256 may be used, where 0 indi-
cates the data queue is not keyed.

The content of this parameter is only valid when setting a

timer.

key value input CHAR(256) Specifies the key value when using a keyed data queue.
The content of this parameter is only valid when setting a
timer.

user data input CHAR(60) Specifies the user data that is to be included in the timer-

expired entry when the timer expires.

The content of this parameter is only valid when setting a
timer.

Note: This data is treated as character data only and
should not contain pointers.

Description of Function

The QOLTIMER program is called by a user-defined communications application
program to either set or cancel a timer. Up to 128 timers, each uniquely identi-
fied by a name (timer handle), can be set in the job in which the user-defined
communications application program is running.

When the QOLTIMER program is called to set a timer, a timer handle is returned
to the user-defined communications application program. The timer handle,
along with the user data supplied when the timer was set, is included in the
timer-expired entry that is sent to the data queue when the specified amount of
time for this timer has elapsed. The timer will then be reestablished, if neces-
sary. For example, suppose a user-defined communications application program
sets a timer with a five second interval to be established two times. After five
seconds, the timer-expired entry for this timer will be sent to the data queue
specified when the timer was set. The timer will then be automatically reestab-
lished, and five seconds later, another timer-expired entry for this timer will be
sent to the data queue. See “Timer-Expired Entry” on page 6-5 for the format of
the timer-expired entry.

In addition to setting a timer, the user-defined communications application

program can call the QOLTIMER program to cancel one or all timers currently
set in the job in which the user-defined communications application program is

Chapter 2. User-Defined Communications Support APIs 2-63

running. User-defined communications support will implicitly cancel a timer in

ihe following cases:

* after a timer has expired the specified number of times
e when a job ends that had one or more timers set

Note: User-defined communications support does not associate timers with
links. If necessary, that association must be done by the user-defined commu-

nications application program.

Return and Reason Codes

Table 2-53. Return and Reason Codes for QOLTIMER

Return /

Reason

Code Meaning Recovery

0/0 Operation successful. Continue processing.

81/9999 Internal system error detected. Escape See messages in the job log for further infor-
message CPF91F0 will be sent to the user- mation. Report the problem using the
defined communications application program ANZPRB command.
when this return and reason code is received.

83/1001 Key length not valid. Correct the key length parameter. Try the

request again.

83/1009 Timer operation not valid. Correct the operation parameter. Try the

request again.

83/1010 Timer interval not valid. Correct the interval parameter. Try the

request again.

83/1011 Number of times to establish timer not valid. Correct the establish count parameter. Try

the request again.

83/3400 Timer not valid on cancel operation. Correct the timer to cancel parameter. Try

the request again.

83/3401 All timers are currently set for the requested Cancel a timer. Try the request again.
set operation.

83/3402 Timer not set on cancel operation. Continue processing.

2-64 AS/400 System Programmer’s Communications Interface Guide

Chapter 3. Programming Design Considerations

This chapter discusses concepts related to user-defined communications and
how they might relate to the design of a user-defined communications applica-
tion. This chapter covers:

* Jobs

* Application program feedback

* Programming languages

e X.25 networks

e Token-ring and Ethernet networks
* Data queues

e User spaces

Jobs

A fundamental concept in user-defined communications is the job. A job and a
process are the same on the AS/400 system. The terms are used interchange-
ably in the AS/400 system manuals.

The concept of the job is important because the user-defined communications
support performs services for the job requesting the communications support
through one of the user-defined communications APls. Some information used
by the user-defined communications support is kept along with other information
about the job. This can be displayed with the Work with Job (WRKJOB)
command. The Work with Communications Status option displays user-defined
communications information for the job (communications handle name, last oper-
ation, input and output counts).

A user-defined communications application program always runs within a job.
This job may be run interactively or in batch and always represents a separate
application to the user-defined communications support. This means that the
same protocol can be actively running in more than one job on the system.
Also, more than one job can have links that share the same line as other jobs
running user-defined communications application programs.

Each link that is enabled by a user-defined communications application program
logically consists of the line, network controller, and network device description
objects. Many user-defined communications applications can share the same
line and controller description, provided the applications are running in different
jobs, but each application will use a different device description. Up to 256
device descriptions can be attached to a controller description. This means that
there may be a maximum of 256 jobs running user-defined communications
applications that share the same line at one time. When an application has fin-
ished using a link and disabling it, the network device description used by the
application becomes available to another user-defined communications applica-
tion.

For end-to-end communication to begin, the applications on each system must
be started. There is no equivalent function to the intersystem communication
function (ICF) program start request. The user-defined communications applica-
tion program is responsible for providing this support, if needed, To provide this
support, the application can have a batch job servicing remote requests to start

© Copyright IBM Corp. 1991 31

a user-defined communications application program. This job can be created to
run in any subsystem.

For more information on jobs and subsystems, refer to the Work Management
Guide.

User-defined communications application programs can be designed so that the
entire protocol resides within one job or separate jobs where each job repre-
sents a portion of the protocol.

There is a one-to-one correspondence between a job and the user-defined com-
munications support for that job. The user-defined communications support for
one job does not communicate with the user-defined communications support for
another job. If two applications wish to communicate between themselves, a
method such as a shared data queue should be used. Also, the data queue
could be shared between the two {or more) jobs and the user-defined commu-
nications support for those jobs.

Figure 3-1 shows how user-defined communications relate to the AS/400 system
job structure and the data queue that provides intraprocess communication
between the user-defined communications application and the user-defined com-
munications support.

In this figure, one interactive job is running over an X.25 line (X25USA) to a
system in Rochester, Minnesota, using the user-defined communications
support. The link was enabled with communications handle name, ROCHESTER.

The user space application programming interfaces (APIs) that the user-defined
communications application program is using are shown, along with the data
queue programming interface and the user-defined communications support

APls.
User—Defined Communications
Application Program QSNDDTAQ
<«— | Data Queue
Job name: DSPB6 QPGMR 000123 QRCVDTAQ Support
] A
QOLELINK
QOLDLINK
QUSPTRUS QOLSETF
QUSCHGUS QOLRECV
QUSRTVUS QOLSEND QSNDDTAQ
QOLQLIND
QOLTIMER
v v v
User Space User-Defined Communications Data Queue
Support Support Object
4 user spaces Link/Handle: ROCHESTER

Line Description:
X25USA

R

Figure 3-1. Overview of APl Relationships

3-2 AS/400 System Programmer’s Communications Interface Guide

The next figure shows two jobs, Job A and Job B. Each job is using the user-
defined communications support to communicate with the networks attached to
the AS/400 system by the line description. The figure shows the relationship
between the different APIs and the job which is running a user-defined commu-
nications application program.

The solid lines in the figure indicate that callable APIs that are used to communi-
cate between the application program and the system services shown.

Job A Job B
user—defined user—defined
communications data queue communications
application program support application program
user space
user—defined support user—defined
communications communications
support support
Ethernet X.25 Token—Ring
network network network

Figure 3-2. Application Programming Interface to Job Structure

The following list pertains to Figure 3-2.

« A user-defined communications application program uses the data queue
APls, user space APIs, and user-defined communications APIs.

* An application having more than one link enabled can use a separate data
queue for each link, or the same data queue for some or all the links that it
has enabled.

e The two jobs can communicate with each other using a common data queue.
This data queue can be the same data queue that is used for user-defined
communications support or a different one.

* The user spaces can be accessed by both jobs, or any other job on the
system, with proper authority to the user spaces.

¢ The user-defined communications support uses the data in the output user
spaces that are created when the link was created. The application making
the call to QOLSEND can fill the output buffer and descriptor, or another
application can do this.

¢ The user-defined communications support sends data to the application
through the input buffer and descriptor that was created when the link on
which the data is arriving was created. Either the application making the call
to QOLRECYV retrieves the data from the input buffer and descriptor, or
another application with access to the user spaces does this.

Chapter 3. Programming Design Considerations 3-3

* The application supplies any communications handle (link name) to the link
as long as this name is unique among all the other links that the job has
enabled.

e An application can enable as many links as there are line descriptions that
are supported (X.25, token-ring and Ethernet) and that are able to be varied
on.

* An application is able to run over X.25 and LAN links concurrently.

3-4 AS/400 System Programmer’s Communications Interface Guide

Application Program Feedback

Return and reason codes are used to indicate the success or failure of an opera-
tion, and suggested recovery. In severe error conditions an escape message is
signaled to the application. If a severe error occurs, user-defined communica-
tions will no longer be available to the application.

On the return of QOLSEND and QOLRECYV there are cases where the diagnostic
field has been filled in. The reason code will indicate if the application should
look at the data returned in the diagnostic field.

Synchronous and Asynchronous Operations

Most operations that an application requests on the call to QOLSEND are syn-
chronous operations. Synchronous operations involve one step, which is to call
QOLSEND, passing the appropriate information. Synchronous operations com-
plete when QOLSEND returns to the application. The success or failure of the
operation is reported in the return and reason codes by QOLSEND.

Asynchronous operations do not complete when QOLSEND returns to the appli-
cation. There are two steps for every asynchronous operation:

1. A call to QOLSEND to initiate or request the operation.
2. A call to QOLRECV to receive the results of the completed operation.

When QOLSEND returns to the application, the request for the operation has
been successfully submitted. After the requested operation has completed, the
user-defined communications support sends an incoming data entry (if neces-
sary) to the data queue to instruct the application to call QOLRECYV to receive the
data. When the application’s call to QOLRECV returns, the parameter list con-
tains the success or failure of the operation. If the operation was unsuccessful
due to an application template error in the user space used for output, the
request is copied into the receive user space. The offset to the template error
detected is returned in the parameter list of QOLRECV. Asynchronous oper-
ations are only used for X.25 for open connection requests, close connection
requests, and resets.

For either type of operation, the application is allowed to reuse the output user
spaces as soon as the call to QOLSEND returns.

Programming Languages

User-defined communications support can be called by a program call from any
AS/400 system-supported language. Each programming language has advan-
tages and disadvantages of its own, none which directly relate to the user-
defined communications support. One consideration for choosing one language
over another, is that the programming language needs the ability to set a byte
field to any possible hexadecimal value. This does not restrict programming in
the different languages, but does make some languages more appealing than
others.

Chapter 3. Programming Design Considerations 3-5

Starting and Ending Communications

Relatively little configuration is required to begin communications to the network.
For information on configuration, refer to Chapter 6, “Configuration and Addi-
tional Information.”

To start communications to a network, the user-defined communications applica-
tion enables the link to the network by calling QOLELINK. Once the link is
enabled, a user-defined communications application program can call any of the
user-defined communications support APIs, and request any of the supported
operations for the link. When the application program has finished communi-
cating with the the network, it disables the link by calling QOLDLINK.

Note: Enabling the link does not result in any communications activity on the
network. Disabling a link may cause communications activity for X.25 links if
connections are active when the link is disabled.

Programming Considerations for X.25 Applications

The user-defined communications support interface to an X.25 network is at the
packet level, which is a connection-oriented level. The user-defined communica-
tions application program is responsible for ensuring reliable end-to-end
connectivity. End-to-end connectivity means that the user-defined communica-
tions application program will initiate, receive, and accept X.25 calls and handle
network errors reported to the application, as well as send and receive data.

A user-defined communications application has access to packets which flow
over Switched Virtual Circuits (SVCs) and Permanent Virtual Circuits (PVCs). An
application can have SVC and PVC connections active concurrently. Up to 32
virtual circuits can be configured on an X.25 line description. The X.25 Network
Guide provides a good discussion on configuration limitations.

The Display Connection Status (DSPCNNSTS) command displays the virtual cir-
cuits that are in use by a the network device, and the state of each connection.
This command also displays the active inbound routing information that the
application is using to route calls.

X.25 Packet Types Supported

A packet is the basic unit of information transmitted through an X.25 network. In
the table below, the X.25 packet types are listed along with the type of service
provided. Services for Switched Virtual Circuit (SVC) and Permanent Virtual
Circuit (PVC) connections are identified as well as the services that are not
accessible (N/A) to a user-defined communications application program.

Packet Type Application Input or Access SvC PVC N/A
Data Q,D bits of the general format identifier X X
(GFl)

Note: The modulus used is configured in
the line description. The open connection
request allows the user-defined commu-
nications support to set the actual window
size used.

3-6 As/400 System Programmer’s Communications Interface Guide

Packet Type Application Input or Access svC PVC N/A
Interrupt 32 bytes of data X X
Note: On the AS/400 system, the X.25
packet layer provides the confirmation of
the receipt of this packet. The call to
QOLSEND will not return until the interrupt
has been confirmed by the remote system.
Reset Cause and diagnostic codes X X
request Note: User-defined communications appli-
cation provides the confirmation of this
packet
Reset indi- Cause and diagnostic codes X X
cation Note: User-defined communications appli-
cation provides the confirmation of this
packet
Reset confir- Note: Reset collisions are detected and X X
mation reported to the application on the reset
confirmation
Incoming Remote DTE, local virtual circuit, packet X
Call and window sizes, up to 109 bytes of addi-
tional facilities, up to 128 bytes of bytes of
call user data
Call Request Remote DTE, local virtual circuit, packet X
and window sizes, up to 109 bytes of addi-
tional facilities, up to 128 bytes of bytes of
caii user data
Call Accept Packet and window sizes, up to 109 bytes of X
additional facilities
Call Con- Negotiated packet and window sizes, facili- X
nected ties
Clear Cause and diagnostic codes, facilities, up to X
request 128 bytes of clear user data
Clear indi- Cause and diagnostic codes, facilities, up to X
cation 128 bytes of clear user data
Note: The X.25 packet layer support pro-
vides the confirmation on this request
Clear confir- Note: The X.25 packet layer support pro- X
mation vides this support
Receive Note: The flow of RR and RNR packets is X
Ready (RR) determined by the automatic flow control
field of Format |, specified in the open con-
nection request
Receive Not Note: The flow of RR and RNR packets is X
Ready (RNR) determined by the automatic flow control
field of Format I, specified in the open con-
nection request
Reject (REJ) Note: This packet is not necessarily avail- X
able on all networks and is not supported
by the AS/400 system.
Chapter 3. Programming Design Considerations 3-7

Packet Type Application Input or Access svc PVC NJ/A

Restart Note: These packets affect all virtual cir- X
Request, cuits on the line

Indication,

and Confir-

mation

Diagnostic Note: This packet is not necessarily avail- X

able on all networks and is not supported
by the AS/400 system.

Registration Note: This packet is not necessarily avail- X
Request and able on all networks and is not supported
Confirmation by the AS/400 system.

Operations

User-defined communications support defines many different operations. The
X'B000' operation will either initiate an X.25 SVC call request, or Open a PVC.
By using this operation, an application initiates an open connection request. The
X'B100' operation will either initiate an X.25 SVC Clear request (or confirma-
tion), or Close a PVC. By using this operation, an application initiates a close
connection request. The open connection request, close connection request, and
reset request (or response) operations are two-step operations. Refer to “Syn-
chronous and Asynchronous Operations” on page 3-5 for more information on
programming for two-step operations.

The X'B400' operation initiates an X.25 SVC call accept. This operation is
known as a call accept operation. The X'0000' operation initiates an X.25 Data
packet for a SVC or PVC connection. This operation is called a send data opera-
tion. The call accept and send data operations are one-step operations. Refer
to “Synchronous and Asynchronous Operations” on page 3-5 for more informa-
tion on programming for one step operations.

The other X.25 operations are not requested by the application. They are
reported to the application in the parameter list of QOLRECV. The X'B201' oper-
ation indicates an incoming X.25 SVC call and is known as the call indication
operation. The X'B301' operation indicates that a temporary (reset) or perma-
nent (clear) connection failure has occurred. It is known as the connection
failure indication operation. Finally, the X'0000' operation indicates incoming
data. It is known as the receive data operation.

Connections

User-defined communications support allows X.25 connections over both
switched and permanent virtual circuits. A user-defined communications appli-
cation can have one or many connections active at once. They can be either
SVC, PVC, or both. The Display Connection Status (DSPCNNSTS) command
shows the state of the connection, logical channel identifier, virtual circuit type,
and other information about the call. The states of the connection include acti-
vate pending, active, deactivate pending. When the open connection request or
call accept operations have not yet completed, the connection state is activate
pending. After the open connection request or call accept operations have com-
pleted with return and reason codes of zero, the connection state is active.
When the close connection request has not yet completed, or if the connection
has been cleared by the network, but a close connection request has not been
issued by the application, the connection state is deactivate pending.

3-8 AS/400 System Programmer’s Communications Interface Guide

Note: The connection enters the active state independent of the application
receiving the results of the open connection request. Likewise, a connection can
become completely close (deactivated, and no longer appears on the
DSPCNNSTS screen) independent of the application receiving the results of the
close connection request.

In order for the user-defined communications support and the application
program to differentiate between connections, connection identifiers are used by
both. Connection identifiers are used from the time the connection is started to
the time the connection has successfully ended.

Note: A correctly encoded close connection request will always be successful.
The only time a close connection request is not successful is when the applica-
tion coded the close connection request incorrectly. Refer to “Using Connection
Identifiers” on page 3-14 for more information.

Connection Identifiers

The user-defined communications support assigns an identifier for each con-
nection. This identifier is reported back to the application as the provider con-
nection end point (PCEP). In the same manner, the user-defined
communications application assigns an identifier for each connection and reports
it to the communications support as the user connection end point (UCEP). This
exchange of identifiers allows both the communications support and the applica-
tion to refer to a connection in a consistent manner. The UCEP and PCEP are
exchanged during the open connection request operation when a PVC is opened
or an outgoing call is requested, and the call indication and call accept oper-
ations for incoming calls.

The connection is only identified in terms of PCEP and UCEP. For example, the
user-defined communications support passes information to the application and
reports the UCEP to which the information pertains. In the same manner the
user-defined communications application initiates requests for a connection iden-
tified by the PCEP.

The user-defined communications support will reuse PCEPs as they become
free. PCEPs become free when the application has received notification that the
open connection request never completed successfully, or the close connection
request has completed successfully. This means that PCEPs are not reused until
the applications calls QOLRECV, which returns either of the listed operations.
Until the PCEP is freed, data can be received by the application for the UCEP
corresponding to the PCEP of the connection.

User-defined communications support places no restrictions on the value of the
UCEP, and does not verify its uniqueness. Since all incoming data and con-
nection failure indications are passed to the application using the UCEP con-
nection identifier, the application should ensure uniqueness of each UCEP. Refer
to “Using Connection Identifiers” on page 3-14 for information on how to reuse
connection identifiers.

Connection Information

In order to ensure reliable end-to-end connectivity, a user-defined communica-
tions application keeps track of the control information for each connection it is
responsible for. Some of this control information is listed below:

» State of the connection (activating, active, deactivating, reset)
* PCEP for this connection

Chapter 3. Programming Design Considerations 3-9

* SVC or PVC connection indicator

* Negotiated frame sizes; maximum data unit size
¢ Connection is no longer active indicator or state
« (other application specific information)

The application can use the UCEP as an index into the program’s data struc-
tures, which keep track of this information.

Switched Virtual Circuit (SVC) Connectivity

Configuration

The SVCs, which are configured in the X.25 line description, are shared among
all of the users of the line description. These users are SNA, Asynchronous
X.25, OSI, TCP/IP, and user-defined communications. The line description should
be defined with enough SVCs to accommodate all of the users of the X.25 line
description.

Any SVCs defined in the X.25 line description that are not in use by any control-
lers (including the network controller) are available to a user-defined commu-
nications application program. The available SVCs are distributed as they are
requested by the users of the X.25 line description.

Refer to X.25 Network Guide for more information on configuring X.25 line
descriptions.

For user-defined communications, an SVC is used by an application when the
application either initiates a call, or receives an incoming call. The SVC will no
longer be in use when the application successfully initiates a clear request to the
SVC. Like PVCs, SVCs allow only one application program to have an active
connection using the virtual circuit at a time.

Inbound Routing Information

Before an application can receive and accept an incoming call, it must first
describe to the user-defined communications support the X.25 calls it wants to
look at. The application accomplishes this by issuing a program call to
QOLSETF, specifying the inbound routing information in the filter.

The inbound routing information that an application specifies is the first byte of
call user data called the protocol ID, or the protocol ID combined with the calling
DTE address. In addition, the application specifies whether it will accept calls
with fast select, and reverse charging indicated. The calls that the application
receives can either be accepted or rejected. The advantage of using filters to
reject some calls (based on calling DTE address, fast select, and reverse
charging indicated in the incoming call) is that the application is alleviated of
some calls which it will always reject.

Once the connection is active, data flows end-to-end between systems and does
not need any other technique to route it to the appropriate application.

3-10 As/400 System Programmer’s Communications Interface Guide

End-to-End Connectivity

End-to-end connectivity is achieved when one system initiates a call and another
accepts the call. When this happens, a connection has been established, and
the state of the connection is active. It will remain active until either one of the
application programs initiates a clear request, or the network (or system) clears
the connection due to an error condition.

Permanent Virtual Circuit (PVC) Connectivity

Configuration

SNA and Asynchronous X.25 controllers use PVCs on the X.25 line by configuring
the controller description to logically attach to the PVC. This is not true for users
of the network controller description. When a PVC is in use by a user-defined
communications application, the system will logically attach the network con-
troller to the PVC. This means that any PVC defined in the X.25 line description
and not attached to any controller (including the network controller) is available
for use by any user-defined communications application that has a link enabled
for the network to which the line is attached.

Because the attaching of PVCs to applications is programmable, one job can
have a open a connection over the PVC, end the connection, and then another
job can open a different connection over the same PVC. Like SVCs, PVCs allow
only one application program to have an active connection using the virtual
circuit at a time.

mlharimd Dandi
HNPVUIIU nNvut

By definition, the PVC does not require a call to set up a path from one system
to another system. As its name suggests, this path always exists (permanent).
Therefore, the application has no need to set a filter for the inbound routing
information. The inbound data information is automatically routed to the applica-
tion that has an open connection over the PVC.

End-to-End Connectivity

PVC connections are opened and closed by the application. To open a PVC, the
application uses the open connection request operation, just as it does to initiate
an X.25 SVC call. To close the PVC, the application uses the close connection
request just as it does to clear the SVC call.

Both systems that want to communicate end-to-end must first open the virtual
circuit on the local system. When the PVC has been opened on the AS/400
system it is considered active and in use by the application. This is true even if
the corresponding remote system doesn’t have the virtual circuit active. On the
AS/400 system, an open connection request always completes with return and
reason codes of zero as long as the PVC is defined in the line description and is
not in use by another application. There is no way to detect whether true
end-to-end connectivity exists on the PVC.

If the virtual circuit is not active on both systems, and one system attempts to
communicate to the other, the virtual circuit on the system with the active PVC
will be reset. An application that supports X.25 resets sees the reset arrive as a
result of the attempt at sending data. In order to continue, the application
responds to the reset. An application that does not support X.25 resets sees a
connection failure. The application closes the PVC and opens the PVC in order
to continue to use the PVC.

Chapter 3. Programming Design Considerations 3-11

Similarly, when a PVC connection is closed from one system, the other system

will see a reset (if reset is supported by that application) or a connection failure
if reset is not supported. If the application sees a reset, it must respond to the

reset before communications can continue on that connection.

Sending and Receiving Data Packets

Data Sizes

Data units larger and smaller than the negotiated transmit packet size can be
sent by a user-defined communications application. Each data unit will be seg-
mented into the appropriate packet sizes by the AS/400 system. Contiguous
data larger than the negotiated packet size can also be sent. It will be divided
into individual packets and sent out with the more-data-indicator on. The user-
defined communications application program should request that the data unit
size be a multiple of the transmit and receive packet sizes configured in the line
description. The user-defined communications application program sets impor-
tant values that pertain to each connection. See “X.25 SVC and PVC Output
Operations” on page 2-22 for important information on these values, which are
contained in the user spaces, and the importance of these values to the user-
defined communications application.

The values that the application supplies should be carefully determined and tai-
lored to the needs of the application. Similarly, the application uses the values
returned to ensure negotiated limitations are not exceeded.

The application uses three values in determining how to fill the output user-
space buffer. These values are:

* Maximum data unit size
e Maximum data unit assembly size
* Negotiated transmit packet size

The maximum data unit size is the value that the application specifies when the
link is enabled. The maximum data unit assembly size is the total length of con-
tiguous input data that is supported by the application. Contiguous data units
have the more data indicator set on in all the data units in the sequence; except
the last data unit, which has the more data indicator set off. The application
indicates the maximum data unit assembly size on the open connection request.
The maximum data unit assembly size should always be greater than the
maximum data unit size, to make full use of the user spaces. The negotiated
transmit packet size is returned when the open connection request completes.
The application uses these values together to determine how to fill in the user
space output buffer.

Note: If the remote system exceeds the maximum data unit assembly size and
sends the sequence to the local AS/400 system, the connection is closed or
cleared.

Refer to “Maximum Amount of Outstanding Data” on page 3-13 for related infor-
mation on incoming data limitations.

Interrupts: The Interrupt is a special data packet. A restriction is imposed by
an X.25 network specifying that a DTE cannot have more than one outstanding
Interrupt on any virtual call in each direction. A user-defined communications
application issues an Interrupt by calling QOLSEND. The QOLSEND program will
not return to the application program until the Interrupt confirmation has been

3-12 As/400 System Programmer’s Communications Interface Guide

received. It is important to understand the Interrupt procedures of the remote
DTE in order to avoid any wait conditions due to the remote system not sending
the confirmation to the Interrupt.

Flow Control

The Receive Ready (RR) and Receive Not Ready (RNR) packets are sent by the
AS/400 system on behalf of the user-defined communications application. The
distribution of these packets is based on the automatic flow control field in the
open connection request operation. The automatic flow control (RR/RNR) is sent
to prevent one system from overrunning another system with data.

When the automatic flow control value is exceeded for a connection because a
remote system is sending data at a rate too fast for the local system, an RNR
packet is sent on behalf of the application on that local system. Once the appli-
cation on the local system receives the data, an RR will be sent to allow more
data to be received by the local system’s communications support.

The automatic flow control value should be set high enough so that RR/RNR pro-
cessing occurs so frequently that performance on the virtual circuit is affected,
and low enough that the application can process the data fast enough. If an
application is coded properly, the RR and RNR processing is not noticed by the
application, just as for other system users of X.25.

To avoid situations where the virtual circuit is not operational because an RNR
was sent, or to avoid excessive amounts of RR and RNR processing, the applica-
tion program should always attempt to receive all the data from the communica-

tinneg ciinnnrt An |nr~r\rrnr\’l'|\l radad annlicatin an ralica annthar annlicratinn tn
tiONS SUPPCIt. AN INCoITrect y COGea appication Can Cause andiner appiication i

wait indefinitely for an RR to open the virtual circuit for communications. If the
applications are coded correctly, the RR and RNR packet sequences are unno-
ticed by the applications.

Maximum Amount of Outstanding Data

The communications support will set aside a limited amount of data for the
application(s) it is servicing. For X.25 it-is 128K for each connection. If the 128K
limitation is met, an error log entry is generated and the connection is cleared
(SVCs) or reset (PVCs) by the system. Before this occurs, the AS/400 system
attempts to slow the incoming data traffic by issuing an RNR on behalf of the
application. An RR is sent after the application has received one-third of the
amount of outstanding data.

Refer to “Flow Control” for related information on incoming data and flow
control.

Reset Support

When a user-defined communications application initiates a reset, it is also
responsible for discarding any data that the user-defined communications
support has received. The user-defined communications support will only
discard data if the connection is closed.

Chapter 3. Programming Design Considerations 3-13

Using Connection Identifiers
The following figures illustrate how to use connection identifiers. The figures
illustrate how the two step operations, open connection request, and close con-
nection request relate to the UCEP and PCEP identifiers. Special attention is
paid to the outstanding two-step operations. This is important so that the appli-
cation can correctly interpret the PCEP and reuse UCEPs.

The connections in each figure refer to SVC connections. The same principles
apply when using PVC connections.

Outgoing Connection Scenarios
The following figures show how the application program handles UCEPs and
PCEPs for outgoing connections.

Example 1

Application Program User-Defined Communications Support

(1) Send open connection

request for SVC, use (2) Application requests
next available UCEP, 7. |QOLSEND connection (SVC) sends
E— X.25 call request, uses | CALL REQUEST
(rtn) next available PCEP, 1,
(3) Record new PCEP and - and returns to appli—
wait for response. cation.
CALL ACCEPT
(4) Call accept received «—
(5) Data gueue entry for PCEP 1. Send
indicates data to entry to data queue.
be received. QOLRECY

———| (6) Fill in user space with
result of call request
(rtn) for UCEP 7 and return.
]
(7) Open connection request
was successful.
UCEP (7), PCEP (1) in
data state.

Figure 3-3. Normal Connection Establishment

1. The application wishes to open a connection, so it calls QOLSEND passing it
the UCEP it wants to use for the connection. The application keeps track of
the UCEP, PCEP pair. At this point UCEP=7, and PCEP is undefined.

2. The user-defined communications support receives the request, stores the
UCEP for the connection, and uses the next available PCEP (1); and returns
to the application, acknowledging the receipt of the request.

The user-defined communications support validates the request and issues
the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1. The UCEP=7,
PCEP =1 connection is not yet active. Next, the application calls QRCVDTAQ
to wait for the incoming data entry. The application is expecting the open
connection response.

4. The X.25 call accept is received for PCEP=1. To inform the application of
the incoming data, an incoming data entry is sent to the data queue.

3-14 As/400 System Programmer’s Communications Interface Guide

5. The application’s call to QRCVDTAQ returns with the incoming data entry.

The application then issues a call to QOLRECV.

. The user-defined communications support fills in the input user space with

data for the open connection response operation, and determines the UCEP
that the data is for by using the PCEP that the X.25 call accept is for. Since
the call accept was received for PCEP=1, the UCEP is 7.

. The application’s call to QOLRECYV returns with successful return and reason

codes for the open connection response operation. This operation was
reported for UCEP 7; the UCEP =7, and PCEP =1 connection is now active.

Example 2

Application Program User-Defined Communications Support

(1) Send open connection

request for SVC, use (2) Application requests
next available UCEP, 7. |QOLSEND connection (SVC) send
> X.25 call request, use CALL REQUEST
(rtn) next available PCEP, 1,
(3) Record new PCEP and - and return to appli-
wait for response. cation.
CLEAR
(4) Call was cleared «—
(5) Data queue entry for PCEP 1. Send
indicates data to entry to data queue.
receive. QOLRECV

| (6) Fill in user space with
result of call request
(rtn) for UCEP 7 and return.

]

(7) Open connection request
was not successful.
UCEP 7 available for
reuse.

Figure 3-4. Connection Request Cleared by Network/Remote System

1.

The application wishes to open a connection, so it calls QOLSEND, passing it
the UCEP it wants to use for the new connection. The application keeps
track of the UCEP, PCEP pair. At this point UCEP=7, and PCEP is undefined.

The user-defined communications support receives the request, stores the
UCEP for the connection, and uses the next available PCEP (1); and returns
to the application, acknowledging the receipt of the request.

The user-defined communications support validates the request and issues
the X.25 call request.

. The application records that the PCEP for UCEP=7 is 1, and the UCEP =7,

PCEP =1 connection is not yet active. Next, the application calls QRCVDTAQ
to wait for the incoming data entry. The application is expecting the open-
connection response.

A clear is received for PCEP=1. To inform the applicétion of the incoming
data, an incoming data entry is sent to the data queue.

. The application’s call to QRCVDTAQ returns with the incoming data entry.

The application then issues a call to QOLRECV.

. The user-defined communications support fills in the input user space with

data for the open connection response operation, and determines the UCEP

Chapter 3. Programming Design Considerations 3-15

for the data by using the PCEP for which the X.25 call accept was received.
Since the call was cleared for PCEP=1, the UCEP is 7. The PCEP=1 is no
longer active, and may be reused by the user-defined communications
support.

7. The application’s call to QOLRECYV returns with unsuccessful return and
reason codes for the open connection response operation. This for PCEP=1,
the UCEP is 7. The PCEP=1 is no longer active, and operation is for
UCEP=7. Because the connection is not open, the user-defined communica-
tions support’s PCEP =1 no longer implies UCEP=7, and the application’s
UCEP =7 may be reused.

Example 3

Application Program User-Defined Communications Support

(1) Send open connection

request for SVC, use (2) Application requests
next available UCEP, 7. |QOLSEND connection (SVC) send
> X.25 call request, use CALL REQUEST
(rtn) next available PCEP, 1,
(3) Record new PCEP and - and return to appli—
wait for response. cation.

(4) Send close connection

request for PCEP 1. QOLSEND| (5) Receive request to
— clear PCEP 1.
(rtn)
<+——— (6) User space error found.
(7) Data queue indicates Send entry to data
data to be received. queue.
QOLRECV

——>| (8) Fill in user space with
the close connection
(rtn) request for UCEP 7 and
(9) Close connection request |€——— return.
was not successful.
UCEP 7, PCEP 1 remains
active.

Figure 3-5. Request to Clear Connection with Outstanding Call (Unsuccessful)

1. The application wishes to open a connection, so it calls QOLSEND passing it
the UCEP for the new connection. The application keeps track of the UCEP,
PCEP pair. At this point UCEP=7, and PCEP is undefined.

2. The user-defined communications support receives the request, stores the
UCEP for the connection, and uses the next available PCEP (1); and returns
to the application, acknowledging the receipt of the request.

The user-defined communications support validates the request and issues
the X.25 call request.

3. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7,
PCEP =1 connection is not yet active. Next, the application calls QRCVDTAQ
to wait for the incoming data entry. The application is expecting the open
connection response.

4. The application no longer wants the UCEP =7 connection. It calls QOLSEND
passing the PCEP =1, to identify the connection to be closed.

3-16 AS/400 System Programmer’s Communications Interface Guide

5. The user-defined communications support receives the request, and returns
to the application, acknowledging the receipt of the request.

The user-defined communications support validates the request and finds an
error.

6. The user space error is found. A copy of the user space in error will be
passed back to the application. To inform the application of the unsuccessful
close connection request, an incoming data entry is sent to the data queue.

7. The application’s call to QRCVDTAQ returns with the incoming data entry.
The application then issues a call to QOLRECV.

8. The user-defined communications support fills in the input user space with
data for the unsuccessful close connection request operation, and deter-
mines the UCEP that the data is for by using the PCEP that the close con-
nection was requested for. Since the close connection request was for
PCEP=1, the UCEP is 7. The PCEP=1 is no longer active.

9. The application’s call to QOLRECYV returns with unsuccessful return and
reason codes for the close connection response operation. This operation is
for UCEP 7. The connection UCEP=7, PCEP=1 is still in use by both the
application and the user-defined communications support. The application
can either correct the error and reissue the operation, or wait for the call to
be accepted or rejected.

Example 4

Application Program User—Defined Communications Support

(1) Send open connection

request for SVC, use (2) Application requests
next available UCEP, 7. |QOLSEND connection (SVC) sends
> X.25 call request, uses | CALL REQUEST
(rtn) next available PCEP (1) ————
(3) Record new PCEP and - and returns to appli—
wait for response. cation.
CALL ACCEPT
(4) Send close—connection (5) Call accepted for —
request for PCEP 1. QOLSEND to data queue.
—>
(6) Receive request to
(rtn) clear PCEP 1.
4._—_

(7) Data queue indicates data
to be received. QOLRECV

| (8) Fill in user space with

result of call request

(rtn) for UCEP 7 and return.
(9) Open connection request |<«—
was successful, (10) User space error. Send
UCEP, PCEP: 7, 1 active. entry to data queue.
(11) Data queue indicates
there is data to QOLRECV
receive. F—|(12) Fill in user space with
close connection request
(rtn) that failed for UCEP 7
(13) Close connection request|¢— and return.

was not successful.
UCEP (7), PCEP(1)
active.

Figure 3-6. Unsuccessful Attempt to Clear Outstanding (Successful) Call

Chapter 3. Programming Design Considerations 3-17

10.

11,

12.

13.

. The application wishes to open a connection, so it calls QOLSEND, passing

the UCEP for the new connection. The application keeps track of the UCEP,
PCEP pair. At this point UCEP=7, and PCEP is undefined.

. The user-defined communications support receives the request, stores the

UCEP for the connection, and uses the next available PCEP (1); and returns
to the application, acknowledging the receipt of the request.

The user-defined communications support validates the request and issues
the X.25 call request.

The application records that the PCEP for UCEP =7 is 1, and the UCEP=7,
PCEP =1 connection is not yet active. Next, the application calls QRCVDTAQ
to wait for the incoming data entry. The application is expecting the open
connection response.

. The application no longer wants the UCEP =7 connection. It calls QOLSEND

passing the PCEP =1, to identify the connection to be closed.

. The X.25 call accept is received for PCEP=1. To inform the application of

the incoming data, an incoming data entry is sent to the data queue.

. The user-defined communications support receives the request, and returns

to the application, acknowledging the receipt of the request.

. The application’s call to QRCVDTAQ returns with the incoming data entry.

The application then issues a call to QOLRECV.

The user-defined communications support fills in the input user space with
data for the open connection response, and determines the UCEP that the
data is for by using the PCEP for the X.25 call accept. Since the call accept
was received for PCEP=1, the UCEP is 7.

The application’s call to QOLRECV returns with successful return and reason
codes for the open connection request operation. This operation is reported
for UCEP=7; the UCEP=7, PCEP =1 connection is now active with an out-
standing close connection request.

While processing the close connection request, the user-defined communica-
tions support detects an error in the user space. The user space that is in
error is copied into the input user space, so the application is aware of the
data in error. To inform the application of the unsuccessful close connection
request, an incoming data entry is sent to the data queue.

The application’s call to QRCVDTAQ returns with the incoming data entry.
The application then issues a call to QOLRECV.

The user-defined communications support fills the input user space with data
for the unsuccessful close connection request operation, and determines the
UCEP that the data is for by using the PCEP that was requested for the close
connection was requested. Since the close connection request was for
PCEP=1, the UCEP is 7. The PCEP=1 is still active.

The application’s call to QOLRECV returns with unsuccessful return and
reason codes for the close connection response operation. This operation is
for UCEP 7. The connection UCEP =7, PCEP=1 is still in use by both the
application and the user-defined communications support. The application
can either correct the error and reissue the operation, or wait for the call to
be accepted or rejected.

3-18 AS/400 System Programmer’s Communications Interface Guide

Example 5

Application Program User—Defined Communications Support

(1) Send open connection

request for SVC, use (2) Application requests
next available UCEP, 7. |QOLSEND connection (SVC) sends
> X.25 call request, uses CALL REQUEST
(rtn) next available PCEP (1), ——
(3) Record new PCEP and D and returns to appli-
wait for response. cation.
CALL ACCEPT
(4) Send close connection (5) Call accepted for PCEP 1. |¢————
request for PCEP 1. QOLSEND Send entry to data queue.
—
(6) Receive request to clear
(rtn) PCEP 1.
D a— CLEAR
(7) Data queue indicates data (8) Issue clear request. —
to be received.
QOLRECV

——| (9) Fill in user space with
result of call request

(rtn) for UCEP 7 and return. CLEAR CONFIRMED
] -—
(10) Open connection request
was successful. (11) Clear is confirmed. Send
UCEP (7), PCEP (1) entry to data queue.
is active.
(12) Data queue indicates
there is data to QOLRECV
receive. ———|(13) Fill in user space with
(rtn) close connection request
(14) Close connection request|<—— response for UCEP 7 and
was successful. return.

UCEP 7 no longer active.

Figure 3-7. Successful Attempt to Clear Outstanding (Successful) Call

1.

The application wishes to open a connection so it calls QOLSEND, passing it
the UCEP for the new connection. The application keeps track of the UCEP,
PCEP pair. At this point UCEP=7, and PCEP is undefined.

. The user-defined communications support receives the request, stores the

UCEP for the connection, and uses the next available PCEP (1); and returns
to the application, acknowledging the receipt of the request.

The user-defined communications support validates the request and issues
the X.25 call request.

The application records that the PCEP for UCEP=7 is 1, and the UCEP=7,
PCEP =1 connection is not yet active. Next, the application calls QRCVDTAQ
to wait for the incoming data entry. The application is expecting the open
connection response.

. The application no longer wants the UCEP =7 connection. It calls QOLSEND

passing the PCEP =1, to identify the connection to be closed.

The X.25 call-accept is received for PCEP=1. To inform the application of
the incoming data, an incoming data entry is sent to the data queue.

. The user-defined communications support receives the request, and returns

to the application, acknowledging the receipt of the request.

Chapter 3. Programming Design Considerations 3-19

7. The application’s call to QRCVDTAQ returns with the incoming data entry.
The application then issues a call to QOLRECV.

- 8. The user-defined communications suppor{ validates the close connection
request, and issues an X.25 Clear request.

8. The user-defined communications support fills in the input user space with
data for the open connection response, and determines the UCEP that the
data is for by using the PCEP for the X.25 call accept. Since the call accept
was received for PCEP=1, the UCEP is 7.

10. The application’s call to QOLRECYV returns with successful return and reason
codes for the open connection request operation. This operation is reported
for UCEP =7; the UCEP=7, PCEP=1 connection is now active with an out-
standing close connection request.

11. The clear confirmation is received for PCEP=1. To inform the application of
the successful close connection request, an incoming data entry is sent to
the data queue.

12. The user-defined communications support fills the input user space with data
for the successful close connection request operation, and determines the
UCEP that the data is for by using the PCEP that was requested for the close
connection. Since the close connection request was for PCEP=1, the UCEP
is 7. The PCEP=1 is no longer active.

13. The application’s call to QOLRECV returns with unsuccessful return and
reason codes for the close connection response operation. This operation is
for UCEP 7. The connection UCEP=7, PCEP =1 is no longer active.

3-20 AS/400 System Programmer’s Communications Interface Guide

Example 6

Application Program User—Defined Communications Support

(1) Send open connection

request for SVC, use (2) Application requests
next available UCEP, 7. |QOLSEND connection (SVC) sends
—> X.25 call request, uses | CALL REQUEST
(rtn) next available PCEP, 1, >
(3) Record new PCEP and A E— and returns to appli-
wait for response. cation.
CLEAR
(4) Send close connection (5) Call cleared for PCEP 1. |¢———
request for PCEP 1. QOLSEND Send entry to data
— queue.
(6) Receive request to clear
(rtn) PCEP 1.

(7) Data queue indicates data|€—
to be received.
QOLRECV
——| (8) Fill in user space with
result of unsuccessful

(rtn) call request for UCEP 7
- and return.
(9) Open connection request
was not successful. (18) Close is successful.
Outstanding close request Send-entry to data
means UCEP 7 still queue.

active.

(11) Data queue indicates
there is data to receive. |QOLRECV

&0 {12) Ei11 in tcanr cnare with
(12) Fill in user space with
(rtn) close connection response
(13) Outstanding close conn— |€¢—— and return.

ection returned success—
ful. UCEP 7 no Tonger
active.

Figure 3-8. Successful Attempt to Clear Outstanding (Unsuccessful) Call

1.

The application wishes to open a connection, so it calls QOLSEND, passing it
the UCEP for the new connection. The application keeps track of the UCEP,
PCEP pair. At this point UCEP=7, and PCEP is undefined.

. The user-defined communications support receives the request, stores the

UCEP for the connection, and uses the next available PCEP (1); and returns
to the application, acknowledging the receipt of the request.

The user-defined communications support validates the request and issues
the X.25 call request.

The application records that the PCEP for UCEP=7 is 1, and the UCEP=7,
PCEP =1 connection is not yet active. Next, the application calls QRCVDTAQ
to wait for the incoming data entry. The application is expecting the open
connection response.

The application no longer wants the UCEP =7 connection. It calls QOLSEND
passing the PCEP =1, to identify the connection to be closed.

The X.25 Clear is received for PCEP=1. To inform the application of the
incoming data, an incoming data entry is sent to the data queue.

The user-defined communications support receives the request, and returns
to the application, acknowledging the receipt of the request.

Chapter 3. Programming Design Considerations 3-21

7. The application’s call to QRCVDTAQ returns with the incoming data entry.
The application then issues a call to QOLRECV.

8. The user-defined communications support fills in the input user space with
data for the open connection response, and determines the UCEP that the
data is for by using the PCEP that the X.25 call accept is for. Since the call
accept was received for PCEP=1, the UCEP is 7.

8. The application’s call to QOLRECYV returns with unsuccessful return and
reason codes for the open connection request operation. This operation is
reported for UCEP=7. Because the close connection request is outstanding,
the UCEP=7, PCEP =1 connection is not fully closed.

10. The request is validated, but no clear is sent because the connection was
cleared previously. The close is considered successful, and an entry is sent
to the data queue.

11. The application’s call to QRCVDTAQ returns with the incoming data entry.
The application then issues a call to QOLRECV.

12. The user-defined communications support fills in the input user space with
data for the successful close connection request operation, and determines
the UCEP that the data is for by using the PCEP that the close connection
was requested for. Since the close connection request was for PCEP =1,
and the UCEP is 7. The PCEP=1 is no longer active.

13. The application’s call to QOLRECV returns with unsuccessful return and
reason codes for the close connection response operation. This operation is
for UCEP 7. The connection UCEP=7, PCEP=1 is no longer active.

3-22 As/400 System Programmer’s Communications Interface Guide

Example 7

Application Program User—Defined Communications Support

(1) Send open connection

request for SVC, use (2) Application requests
next available UCEP, 7. |QOLSEND connection (SVC) sends
— X.25 call request, uses | CALL REQUEST
(rtn) next available PCEP (1), ———
(3) Record new PCEP and D — and returns to appli-
wait for response. cation.
/LEAR
(4) Send close connection (5) Call cleared for PCEP 1. | ¢————
request for PCEP 1. QOLSEND Send entry to data
> queue.

(6) Receive request to clear

(rtn) PCEP 1.
(7) Data queue indicates]
date to be received.
QOLRECV

| (8) Fill in user space with
result of unsuccessful

(rtn) call request for UCEP 7
— and return. PCEP 1 no
(9) Open connection request Tonger active.
was not successful.
UCEP 7 still active. (10) User space error trying
close UCEP 1. Send entry
(11) Data queue indicates to data queue.

there is data to receive.|QOLRECV

| (12) Fill in user space with

close connection request

(rtn) for UCEP 7 and return.

(13) Outstanding close conn— |¢——
ection returned un—
successful. UCEP 7 no
Tonger active.

Figure 3-9. Unsuccessful Attempt to Clear Outstanding (Unsuccessful) Call

1.

The application wishes to open a connection, so it calls QOLSEND passing it
the UCEP for the new connection. The application keeps track of the UCEP,
PCEP pair. At this point UCEP =7, and PCEP is undefined.

. The user-defined communications support receives the request, stores the

UCEP for the connection, and uses the next available PCEP (1); and returns
to the application, acknowledging the receipt of the request.

The user-defined communications support validates the request and issues
the X.25 call request.

. The application records that the PCEP for UCEP=7 is 1, and the UCEP=7,

PCEP =1 connection is not yet active. Next, the application calls QRCVDTAQ
to wait for the incoming data entry. The application is expecting the open
connection response.

The application no longer wants the UCEP =7 connection. It calls QOLSEND
passing the PCEP =1, to identify the connection to be closed.

The X.25 Clear is received for PCEP=1. To inform the application of the
incoming data, an incoming data entry is sent to the data queue.

. The user-defined communications support receives the request, and returns

to the application, acknowledging the receipt of the request.

Chapter 3. Programming Design Considerations 3-23

7. The application’s call to QRCVDTAQ returns with the incoming data entry.
The application then issues a call to QOLRECV.

8. The user-defined communications support fills in the input user space with
data for the open connection response, and determines the UCEP that the
data is for by using the PCEP that the X.25 call accept is for. Since the call
accept was received for PCEP=1, the UCEP is 7.

9. The application’s call to QOLRECYV returns with unsuccessful return and
reason codes for the open connection request operation. This operation is
reported for UCEP=7. Because the close connection request is outstanding,
the UCEP =7, PCEP =1 connection is not fully closed.

10. The request is validated, and an error is found in the user space. An entry is
sent to the data queue.

11. The application’s call to QRCVDTAQ returns with the incoming data entry.
The application then issues a call to QOLRECV.

12. The user-defined communications support fills in the input user space with
data for the unsuccessful close connection request operation, and deter-
mines the UCEP that the data is for by using the PCEP that the close con-
nection was requested for. Since the close connection request was for
PCEP =1, the UCEP is 7. Because the connection was cleared prior to the
close connection request, the PCEP=1, UCEP =7 connection is considered
no longer active to the user-defined communications support.

13. The application’s call to QOLRECV returns with unsuccessful return and
reason codes for the close connection response operation. This operation is
for UCEP 7. The connection UCEP=7, PCEP=1 is no longer active.

Incoming Connections
The following figures show how the application program handles UCEPs and
PCEPs for incoming connections.

Example 1
Application Program User-Defined Communications Support
CALL REQUEST
(1) Incoming call received —
(2) Data queue indicates data use next available PCEP
to receive. QOLRECV 1, and send entry to
> the data queue.
(rtn)
<+——— (3) Fill user spaces with
(4) Incoming call using PCEP incoming call and return.

1. Send call accept, use
next available UCEP (7). |QOLSEND| (5) Send call accept for

— PCEP 1, and return to CALL ACCEPT
(rtn) the application. —
—
(6) Call accept was success—
ful, UCEP (7), PCEP (1) CALLREQUEST

active.

Figure 3-10. Normal Connection Establishment

3-24 AS/400 System Programmer’s Communications Interface Guide

1. An incoming call request is received by the communications support, which
~ determines there is an application that has a filter satisfying this call request.
The communications support uses the next available PCEP =1 for this new
-connection. An entry is sent to the data queue.

2. The application has been waiting for its call to QRCVDTAQ to complete. The
_call completes indicating there is data to be received. The application calls
QOLRECV.

3. The input user space is filled with the incoming call request for PCEP =1,
and QOLRECYV returns.

4. The application looks at the operation, which indicates an incoming call indi-
cation. The PCEP reported by the communications support is 1. The appli-
cation chooses to accept this call, and passes the UCEP to be used for this
new connection. The call is made to QOLSEND with PCEP=1, UCEP=7.

5. The call accept is received and sent for PCEP=1. QOLSEND returns to the
application.

6. The call accept request was successful for UCEP=7, PCEP=1. This con-
nection is now active.

Example 2
Application Program User—Defined Communications Support
CALL REQUEST
(1) Incoming caii received —
(2) Data queue indicates data use next available PCEP
to receive. QOLRECV (1), and send entry to
E— the data queue.
(rtn)
<«—— (3) Fill user spaces with
(4) Incoming call using PCEP incoming call and return.

1. Send call accept, use
next available UCEP (7). |QOLSEND| (4) User space for call

> ~accept not valid. Return
(rtn) to the application.
—

(5) Call accept was not suc—
cessful, UCEP 7 not
active, incoming call
is still outstanding.

Figure 3-11. Send call accept not Valid

1. An incoming call request is received by the communications support, which
determines there is an application that has a filter satisfying this call request.
The communications support uses the next available PCEP =1 for this new
connection. An entry is sent to the data queue.

2. The application has been waiting for its call to QRCVDTAQ to complete. It
does, indicating there is data to be received. The application calls
QOLRECV.

3. The input user space is filled with the incoming call request for PCEP =1,
and QOLRECYV returns. '

4. The application looks at the operation which indicates an incoming call indi-
cation. The PCEP reported by the communications support is 1. The appli-

Chapter 3. Programming Design Considerations 3-25

cation chooses to accept this call, and passes the UCEP to be used for this
new connection. The call is made to QOLSEND with PCEP=1, UCEP=7.

5. The call accept is received and an error is found in the user space.
QOLSEND returns to the application, reporting the error and offset. The
incoming call is still outstanding for PCEP =1.

6. The application checks the return and reason codes and finds that an error
has occurred. The call accept was not sent and the incoming call is still
waiting for a response.

Example 3
Application Program User—Defined Communications Support
CALL REQUEST
(1) Incoming call received |¢————
(2) Data queue indicates data use next available PCEP
to be received. QOLRECY (1) and send entry to
—> the data queue.
(rtn)
<«— (3) Fill user spaces with
(4) Incoming call using PCEP incoming call and return
1. Request to clear this
call. QOLSEND| (5) Send Clear request.
EE— Return to application. CLEAR
(rtn) >
-—
(6) Clear is confirmed. Send| CLEAR CONFIRMATION
entry to data queue. —
(7) Data queue indicates data
to be received. QOLRECV
.
(8) Fill user spaces with
(rtn) clear confirmation data.
—

(9) Clear request was suc—
cessful. PCEP 1 no Tonger
active.

Figure 3-12. Send Clear for Incoming Call

1. An incoming call request is received by the communications support, which
determines there is an application that has a filter satisfying this call request.
The communications support uses the next available PCEP =1 for this new
connection. An entry is sent to the data queue.

2. The application has been waiting for its call to QRCVDTAQ to complete. It
does, indicating there is data to be received. The application calls
QOLRECV.

3. The input user space is filled for the incoming call request for PCEP=1, and
QOLRECV returns.

4. The application looks at the operation which indicates an incoming call indi-
cation. The PCEP reported by the communications support is 1. The appli-
cation does not wish to accept the call, so the user space is filled in for a
close connection request and the application calls QOLSEND

5. The close connection request is received and QOLSEND returns to the appli-
cation, acknowledging the request.

The close connection request is validated and a clear is sent.

3-26 As/400 System Programmer’s Communications Interface Guide

6. The clear confirmation is received for PCEP =1 which has no UCEP. An

incoming data entry is sent to the data queue.

The application’s call to QRCVDTAQ returns with the incoming data entry.
The application calls QOLRECYV to receive the data.

The input user space is filled in with the clear confirmation data. Since the
connection was never established (and the application never assigned a
UCEP to this connection), QOLRECV returns to the application passing a
UCEP of O.

9. The close connection request was successful. PCEP=1 is no longer active.

Example 4
Application Program User—Defined Communications Support
CALL REQUEST
(1) Incoming call received —
(2) Data queue indicates data use next available PCEP
to be received. QOLRECV (1), and send entry to
— the data queue.
(rtn)
<«———— (3) Fill user spaces with
(4) Incoming call using PCEP ‘incoming call and return.
1. Request to clear this
call. QOLSEND| (5) Close connection request
— is received.
(rtn)
-—
(6) Close connection request
is not valid. Send
(7) Data queue indicates data entry to data queue.
to be received. QOLRECV
L
(8) Fill user spaces with
(rtn) the close connection
] request and return.
(9) Clear request not suc—
cessful. PCEP 1 is still
active.

Figure 3-13. Send Clear for Incoming Call

1.

An incoming call request is received by the communications support, which
determines there is an application that has a filter satisfying this call request.
The communications support uses the next available PCEP =1 for this new
connection. An entry is sent to the data queue.

The application has been waiting for its call to QRCVDTAQ to complete. It
completes indicating there is data to be received. The application calls
QOLRECV.

The input user space is filled for the incoming call request for PCEP=1, and
QOLRECYV returns.

The application looks at the operation which indicates an incoming call indi-
cation. The PCEP reported by the communications support is 1. The appli-
cation does not wish to accept the call, so the user space is filled in for a
close connection request and QOLSEND

. The close connection request is received and QOLSEND returns to the appli-

cation, acknowledging the request.

Chapter 3. Programming Design Considerations 3-27

6. The close connection request is validated and an error is found. An entry is
sent to the data queue.

7. The application’s call to QRCVDTARQ return, with the incoming data entry.
The application calls QOLRECYV to receive the data.

8. The input user space is filled in with the unsuccessful close request, and
QOLRECV returns to the application.

9. The close connection request was not successful. UCEP=7, PCEP=1 is still
active.

Closing Connections
The following figures show how the application program closes a connection.
The figures apply to both incoming and outgoing connections.

The next two figures illustrate that a close connection request never completely
guarantees the connection will be closed.

Example 1

Application Program User-Defined Communications Support

(1) Connection is established
as UCEP (7), PCEP (1).

(2) Send Close connection ~|QOLSEND| (3) Receiye close connection
request. E— request and return.

(rtn) (4) User space value is

] incorrect. Send entry
(5) Incoming call using PCEP to data queue.
1. Send call accept,
using next available QOLRECV| (6) Fill user space with
UCEP, 7. > close connection
(rtn) request and return.
«—

(7) Close request was not
successful. UCEP (7),
PCEP (1) remains active.

Figure 3-14. Close Connection Request is Not Valid

3-28 AsS/400 System Programmer’s Communications Interface Guide

Example 2

Application Program User—Defined Communications Support

(1) Connection is established
as UCEP (7), PCEP (1)

(2) Send close connection QOLSEND| (3) Receive close connection
request. — request and return.
(rtn) | (4) Send clear request. CLEAR REQUEST
] —

(5) Receive clear confirma—
tion. Send entry to the | CLEAR CONFIRMATION
(6) Data queue indicates data data queue. B —
to be received.
QOLRECV| (6) Fill user space with

E— close connection confir—
(rtn) mation and return.
-

(7) Close request was
successful. UCEP (7)
PCEP (1) no longer
active.

Figure = 3-15. Close Connection Request is Valid

AS/400 System X.25 Call Control
X.25 caiis arriving to the AS/400 system are routed by the X.25 support, based
primarily on the protocol ID field. This field is the first byte of call-user data in
the X.25 call packet.

Protocol IDs are formally defined and used by SNA, Asynchronous X.25, and
TCP/IP protocols. The fact that some protocol IDs are defined by other commu-
nications protocols does not prevent a user-defined communications application
from using these same protocol IDs to either initiate or accept X.25 calls. Refer
to the X.25 Network Guide for a list of protocol identifiers supported by commu-
nications subsystems on the AS/400 system.

AS/400 system X.25 call control is described as SNA/Asynchronous-X.25-first.
This means that if an incoming call contains an SNA or Asynchronous X.25 pro-
tocol ID, the system will attempt to route the call to SNA or Asynchronous X.25
support. The system will attempt to route the call to the appropriate controller
for SNA or Asynchronous X.25. If there is no switched vary on pending SNA or
Asynchronous X.25 controller to accept the call, it will be routed to the network
controller.

The network controller will search for a filter to match the protocol ID (and
calling DTE address). If no filter exists, the call is rejected by the system. If a
filter exists for the protocol ID (or protocol ID and calling DTE address) the call
and filter is further checked for matching fast select and reverse charging data.
If the call specifies reverse charging, but reverse charging is not specified in the
filter, the call is rejected with an X'42' diagnostic code. If the call specifies fast
select, but fast select is not included in the filter, the call is rejected with an
X'A4' diagnostic code.

Note: TCP/IP, OSI, and user-defined communications support all share the same
network controller and specify inbound routing information to route the calls to

Chapter 3. Programming Design Considerations 3-29

their applications. If two different applications (for example, TCP/IP and a user-
defined communications application) request the same inbound routing informa-
tion, the first to request the filter will be granted the filter. The second request
will be rejected, indicating that a filter is already in use for the inbound routing
information specified in the request.

Is the call for an SNA or
Asynchronous protocol ID?

No Yes

Route to the < |Search for switched

Network Controller vary on pending SNA or
Asynchronous Controller

|

Controller Controller Controller Controller

not found not found found

Is there a filter SNA or Asynchronous

for this protocol ID Controller will

or protocol ID and either accept or

DTE address with reject the call

acceptable values of

fast select and

reverse charging?

No
Yes ¢
Set the connection Reject the
response timer and Call

pass the call to
the application

Application responds
to the call

Application Incoming call
accepts the times out
call

Send a
call accept

Figure 3-16. X.25 Call Control Algorithm

3-30 As/400 System Programmer’s Communications Interface Guide

Performance Considerations
It is important to realize that the X'0000' operation is completely synchronous.
This means that control is not returned to the application until all the data
passed in the data units are sent and confirmed by the DCE. Some implications
of this are:

¢ |f the application sends data on a connection that has data flow turned off
{the remote system sent an RNR to the local AS/400 system), a subsequent
call to QOLSEND with operation X'0000' will not return until the remote
system sends the RR to turn flow back on for the connection.

* When transmitting Interrupt packets, control is not returned to the application
until the interrupt is confirmed by the remote DTE. If the remote DTE is an
AS/400 system, the interrupt is confirmed by the AS/400 system X.25 packet
layer support. If the network is congested, the use of Interrupt packets may
cause a decrease in performance for the application.

In these situations, it may be appropriate to have one job for each connection
(each virtual circuit).

Chapter 3. Programming Design Considerations 3-31

Programming Considerations for LAN Applications

LAN Frames Supported

User-defined communications over LANs use connectionless (unacknowledged)

service. Unacknowledged Information (Ul) frames are the only frames a user-
defined communications application can generate.

The following tables show the user-defined communications application
program’s interface to the LAN frames.

Table 3-1. Ethernet Frame Format

Sequence (FCS)

Ul Frame Field Description No Access
Preamble Synchronization field X
Destination Specifies the MAC adapter address of the
Address (DA) remote station
Source Address Specifies the MAC adapter address of the X
(SA) local station
Type Specifies the upper layer protocol used.
For example, TCP/IP uses X'0800' and
X'0806', SNA uses X'80D5".
Information User data
Frame Check Used for cyclic redundancy checking X
Sequence (FCS)
Table 3-2. Ethernet 802.3 Frame Format
Ul Frame Field Contents & Application Access No Access
Preamble Synchronization field X
Start Frame Bit pattern that indicates the beginning of X
Delimiter (SFD) the frame
Destination Specifies the MAC adapter address of the
Address (DA) remote station
Source Address Specifies the MAC adapter address of the X
(SA) local station
Length Length of the data portion of the frame
Destination Indicates the upper layer protocol the
Service Access frame is for
Point (DSAP)
Source Service Indicates the upper layer protocol the
Access Point frame is from
(SSAP)
Control Contains special indicators X
Information User data
Pad Used for to pad data frames less than 48 X
bytes
Frame Check Used for cyclic redundancy checking X

3-32 AS/400 System Programmer’s Communications Interface Guide

Configuration

Table 3-3. Token-Ring 802.5 Frame Format

Ul Frame Field Contents & Application Access No Access
Starting Delim- Bit pattern that indicates the beginning of X

iter (SD) the frame

Access Control Contains priority, token, monitor and

reserved bits.

Note: The application can only access the
priority bits of this field.

Frame Control Determines MAC or LLC frame X
Destination Specifies the MAC adapter address of the
Address (DA) remote station
Source Address Specifies the MAC adapter address of the X
(SA) local station
Routing Informa- Routing information supplied for frames
tion intended for a system that is not directly
attached to the token-ring network.
Destination Indicates the upper layer protocol the
Service Access frame is for
Point (DSAP)
Source Service Indicates the upper layer protocol the
Access Point frame is from
(SSAP)
Control Contains control information X
Information User data
Frame Check Used for cyclic redundancy checking X
Sequence (FCS)
Ending Delimiter Contains error/control information X
Frame Status Contains control information X
Field
Operations

User-defined communications support defines many different operations. Not all
operations are valid on all data links. The operations which are valid for LAN
links are:

e X'0000' and X'0001'. These operations together represent the send- and
receive-data operations for any of the LAN frames types.

The Service Access Point (SAP) that the user-defined application uses to send
and receive data must be configured in the line description. The 04, 06, and AA
SAPs are automatically generated in the line description unless the SAPs are
manually configured. The 04 SAP is used by SNA, and the 06 and AA SAPs are
used by TCP/IP. An application can choose to use any SAP (including SAPs
defined by SNA or IEEE). The line description must be configured to include the
SAPs the application uses. The SAPTYPE for each SAP used must be configured
as "NONSNA.

Although it is possible to use any SAP configurable on the AS/400 system, it is

not recommended to use SNA SAPs for user-defined communications, since this
may restrict the use of SNA on your AS/400 system. In the same manner, using

Chapter 3. Programming Design Considerations 3-33

the same SAP as other well-known protocols, such as TCP/IP, may restrict the
use of these protocols or the user-defined communications application on the
AS/400 system.

Note: It is not possible to run an SNA application and a user-defined commu-
nications application over the same SAP concurrently. It is possible to
run a TCP/IP application and a user-defined communications application
over the same SAP concurrently, provided the inbound routing informa-
tion is unique among all the non-SNA applications sharing the network
controller.

Inbound Routing Information
For the user-defined communications application to receive data from a LAN, it
must inform the communications support of how to filter the inbound data and
route it to the application. This is accomplished by a program call to QOLSETF.
The fields in the incoming frame which are used to route the data are DSAP,
SSAP, MAC address, and type.

The different filters allow the user-defined application to distinguish its data from
the rest of the data on the LAN. The more selective the inbound routing informa-
tion is, the less chance there is that the application will be processing unneces-
sary input requests. Also, more selective inbound routing information allows
multiple jobs running user-defined communications applications to share the
same SAP.

For example, if an application is using 92 SSAP and 92 DSAP but only talking to
one remote system, it may want to set a more selective filter which would
include DSAP, SSAP, and MAC address. Conversely, if an application accepts
data on the 04 SAP from systems sending data on any SAP, then the application
would set a filter for DSAP only, indicating that it will accept all data arriving on
the 04 SAP.

End-to-End Connectivity
Because user-defined communications on a LAN is connectionless, it is up to the
user-defined communications application protocol to define a method to reach
the remote systems it communicates with. There are several ways to do this.
One way is to have each system configured in a database file on the AS/400
system. Each system could have a local name that the application program uses
to correlate with the MAC address and routing information. LANs provide a
technique to broadcast, which can be used to retrieve this information as well.
An example of this is the Address Resolution Protocol (ARP) used by TCP/IP,
which returns the MAC address and routing information so that a system without
that information can communicate with a new remote system.

Sending and Receiving Data

Maximum Frame Size

The data unit size created by the user-defined communications support is always
large enough to contain the maximum frame size supported by any of the SAPs
configured for non-SNA use (SAPTYPE(*NONSNA)). This value is returned in the
parameter list on the call to QOLELINK, and is called the maximum data unit
size. For the Ethernet (802.3) and token-ring, the maximum frame size that is
configured in the line description will be the maximum frame size that can be

3-34 As/400 System Programmer’s Communications Interface Guide

specified by the application. There is no minimum frame size for the Ethernet
802.3 or token-ring LANSs.

Ethernet Version 2 does not define SAPs for the higher-layer protocols. There-
fore, the maximum frame size is not determined by the maximum frame size for
a SAP. The maximum frame size for Ethernet Version 2 is 1502. The first 2
bytes are for the type field, and the last 1500 bytes are for user data. The
minimum amount of data that it can send is 48 bytes. The first 2 bytes for the
type field, and the next 46 bytes are for user data. [f the line is configured to
handle both Ethernet 802.3 and Ethernet Version 2 data, the larger of the config-
ured value and 1502 is chosen and reported to the application on the maximum
data unit size parameter returned from QOLELINK.

If the user-defined communications application attempts to send data frames
which are larger or smaller than supported, the output request completes with
nonzero return and reason codes and an error code is returned to the applica-
tion in the diagnostic information field.

User-defined communications application accesses information that is contained
in the line description through the QOLQLIND API. 1t is best to make the call to
QOLQLIND after the link has been successfully enabled because the application
is assured that the information passed in the QOLQLIND parameter list is accu-
rate for as long as the link is enabled. The application uses the information on

the frame size for the SAP to send the correct amount of data over the SAP.

Maximum Amount of Outstanding Data

Most often, the data will arrive at a slightly faster rate than the application can
receive it. The communications support will keep data intended for an applica-
tion so that the application can receive it. However, there is a limit to the
amount of data that can be kept for the application later. This is to avoid one
system from overrunning another system’s resources. If this limit is reached, all
new incoming data frames for that application will be discarded until the applica-
tion picks up one third of the data which has been stored for the application.
Since the data consists of unacknowledged information frames, the higher-layer
protocol within the user-defined application detects the loss of data, resends the
data, or performs other recovery actions.

Each time the limit is exceeded, the communications support generates an error
log entry and puts a message in the QSYSOPR message queue, indicating that
the unacknowledged service has temporarily failed.

Ethernet to Token-Ring Conversion and Routing

The IBM 8209 Ethernet to token-ring bridge provides additional connectivity
options for the AS/400 system. Refer to IBM 8209 LAN Bridge Customer Informa-
tion, SA21-9994, for more details.

Performance Considerations

The user-defined communications application program enables connectionless
traffic to enter the AS/400 system from the LAN. In the call to QOLSETF, the
DSAP parameter indicates the SAP which will be activated on the AS/400
system. By activating traffic over a SAP, data will be taken from the LAN and
brought into the AS/400 system. Similarly, deactivating traffic over.a SAP causes
traffic intended for that SAP to be left on the LAN and not brought into the
AS/400 system.

Chapter 3. Programming Design Considerations 3-35

To keep the token-ring and Ethernet line speeds optimal, the SAP or SAPs that
the user-defined communications application uses should be deactivated as soon
as the application no longer wants to receive traffic for the SAP. If the link is
disabled and no other applications are using the SAP(s), they are deactivated
automatically by the user-defined communications support.

Protocols that use broadcast frames as a discovery technique could flood the
network with messages and affect performance on all the systems attached to
the network.

Data Queue Considerations

A user-defined communications application will use a data queue for intrapro-
cess communications between the application and the communications support
to take place. The data queue should be provided by the application prior to the
call to QOLELINK. The link will never be fully enabled if the data queue does not
exist. Communications will no longer be available if the user-defined commu-
nications support detects that the data queue has been deleted.

APPLICATION COMMUNICATIONS SUPPORT

(Link is enabled, application is
successfully using the link.)

Incoming data from
the network.
CALL QoL (Any call)
—_— An attempt is made to
send the incoming data
QSNDDTAQ entry to the data queue.
Error:
data queue
not found. > The Tink using this
data queue will no longer
be usable.
-
Any subsequent CALL
will return with
80/2000 Return/Reason Codes return/reason codes
<« indicating a severe
application error.

In addition to using the data queue for intraprocess communications between the
application and the communications support, the application can use the data
queue to provide interprocess communications with other applications.

The data queue can be keyed so that each process receives data queue entries
only for it’s key. This allows both jobs to put two kinds of entries on the data
queue. One for intraprocess communication and the other for interprocess com-
munication. The key can also serve as a way to prioritize entries on the data
gqueue.

The content of any of the data queue entries that are defined and used by the
application is not restricted by the user-defined communications support. User-
defined communications support will never attempt to receive any entries from
the data queue. Therefore, it is up to the application to receive the entries from

3-36 AsS/400 System Programmer’s Communications Interface Guide

the data queue and perform the appropriate actions for that entry based on the
handle (or timer handle) the entry is for.

This means that it may be necessary for the application to clear the old mes-
sages from the data queue, if the data queue is to be reused. For example, if a
link is disabled, all communication entries for that link (denoted by the commu-
nication handle) prior to the disable complete entry are no longer valid.
Because timer support does not depend on the communications support, timer
entries will still be valid.

The following scenario shows that an incoming data entry received by the appli-
cation is no longer valid because the application made a request to disable the
link.

APPLICATION COMMUNICATIONS SUPPORT

(Link is enabled, application is
successfully using the link.)

Incoming data.

A

CALL QOLDLINK
—_— Incoming data entry

A

added to data queue.

Incoming data is discarded
and disable Tink is requested.

»
L

Disable complete entry
< added to data queue.

Return from QOLDLINK

<

The application will now
call QRCVDTAQ waiting to
receive the disable
complete entry.

The incoming data entry
will be received and
discarded by the appli-
cation.

The application will now
call QRCVDTAQ (again) and
receive the disable
complete entry.

Chapter 3. Programming Design Considerations ~ 3-37

User Space Considerations

The application will use user space objects (*USRSPC) to hold the input and
output buffers and descriptors. The AS/400 system provides application pro-
gramming interfaces that can be used to manipulate the user spaces.

The user spaces are created by the user-defined communications support as
part of an enable link request’(QOLELINK). If the enable link request is not suc-
cessful (return and reason codes are nonzero), the user spaces are not created.
In all, there are four user spaces that are created. Two of these are used for
input and two for output. In each set of two spaces, one is used as a buffer to
contain user data, and the other is used as a descriptor, to describe the data
(length and any other qualifiers to the data).

User—Defined Communications
Application

I output 1| input 1

Data Data Buffer Data Buffer Data
Descriptor Descriptor

User—Defined Communications
Support

The application provides the library and name of the user space object that is to
be created. The descriptive text of the object always contains the name of the
job that is using these spaces. Finally, when the link is disabled (either explicitly
or implicitly) these user spaces will be deleted by the user-defined communica-
tions support. Refer to “QOLDLINK” on page 2-8 for information on disabling
the link.

The application writes to the output buffer and descriptor and reads from the
input buffer and descriptor. Similarly, the communications support reads from
the output buffer and descriptor and writes to the input buffer and descriptor. As
soon as the call to QOLSEND or QOLRECV has completed, the application can
access these user spaces.

Note: Since the user spaces are system objects, appropriate security should be
enforced. An object will inherit security from the job attributes of the application
and the library that the object is created in. Using library QTEMP is one way to

ensure that only the user-defined communications application has access to the
user spaces.

If these user spaces are changed or deleted while in use by the user-defined
communications support, a severe application error will be reported to the appli-

3-38 AS/400 System Programmer’s Communications Interface Guide

cation and communications over the link associated with the user spaces will no
longer be possible.

User—Defined Communications

Application D E—
Application Application
writes data reads data
to output from input
user spaces. user spaces.
Data Data Buffer Data Buffer Data
Descriptor Descriptor

Data is read from Data is written to
user spaces by l user spaces by

User-Defined Communications
Support

ThAaocn ocnnrac hawvun laminal wiawara Adafimad hes tiaoawe Aafi;ad ~ H
HIEOT SPaled jlave [Uyildl VIEWS UCHINCU Dy uscer-uciinecu Lornnmureatulios

support. These views are sometimes referred to as formats. There is a format
for filters, sending and receiving LAN frames, and sending and receiving X.25
packets. See “QOLSEND” on page 2-17 and “QOLRECV” on page 2-40 for
details on these formats.

The application is responsible for setting all the data required for the format.
There are two types of byte fields in the buffer and descriptors, character (CHAR)
and binary (BIN). Binary implies that the value will be used as a humeric value.
Sometimes this might be a one-byte numeric value; for example, 12 = X'0C'. If
the language the application is written in is not capable of setting this type of
binary field, the field should be declared as character and set to X'0C'. The
character type contains an EBCDIC value, printable or unprintable. All param-
eter values are either character or 4-byte binary. See “Programming
Languages” on page 3-5 for help in converting between the language your appli-
cation is written in.and the expected input by the user-defined communications
support.

The communications support will never change the output buffer, therefore, the
application is responsible for initializing the buffer and descriptor for the next
operation to use if necessary. The data in the output buffer can also be used to
help determine why a particular operation is not successful.

For performance reasons, the application should attempt to fill the output buffer
as completely as possible.

Finally, for security reasons, the application will choose the library the user
space object will reside in. The library can be any system library, including
QTEMP. The advantage (or disadvantage) of using QTEMP for user space

Chapter 3. Programming Design Considerations 3-39

objects is that only the job which has enabled the links has access to the user
spaces. This is because a QTEMP library exists for each job on the system. If
the user space objects are in any other library, any job having authority to the
library the user spaces are in can access them.

3-40 AS/400 System Programmer’s Communications Interface Guide

Chapter 4. Application Programming Examples

X.25 Overview

The purpose of this section is to provide a simple example of how X.25-oriented
applications use the user-defined communications support to connect to remote
systems. Two user-defined application examples written in the C programming
language will be used to illustrate a simple file transfer between two systems
over an X.25 packet switched data network (PSDN). An important note to
remember is that although an X.25 example is shown, many of the same con-
cepts can be applied to applications running over token-ring and Ethernet local
area networks (LANSs).

For this example, the following network configuration will be used.

System A System B
Source Target
Application Application
User—Defined User—Defined
Communications Communications
Support Support
X.25 X.25
0000650 0000652
*hkkkkkk
kkk kkk
* X.25 PSDN *

**%k **%k

khXKkAkkkkk

In this example X.25 network, the source application is responsible for estab-
lishing a switched virtual circuit, or connection to the target application running
on System B. This is accomplished by using the remote network address
(System B’s address) of X’0000652’. After the target application on System B is
initialized, it will wait for notification of an incoming call packet before pro-
ceeding. Once the virtual circuit is established, the source application reads
records from a file into its output buffer and sends them to the target application
using normal X.25 data transfer procedures. When receiving the file data, the
target application writes the data to a local file on System B. When the file
transfer completes, the source application closes the connection by issuing an
X.25 clear request packet and ends. When receiving the clear indication packet,
the target application also ends.

User-Defined Communications Support Overview

Both the source and target applications call the QOLQLIND API to obtain infor-
mation about the local X.25 line being used. This information is stored in a local
control block for use in establishing the peer connection during X.25 connection
processing. Both applications also call the QOLELINK API to enable the link for
future communications. The AS/400 line name, communications handle, and
remote DTE address are passed to both programs as arguments to the C func-
tion main(). For simplicity, the user space names and data queue name on the
call to the QOLELINK API are hard coded directly in the applications.

© Copyright IBM Corp. 1991 4-1

Note: Keyed data queue support is used by both applications. The key length is
6 and the keys used are Source and Target for the source and target applica-
tions, respectively.

Activating Filters

Once the links have been enabled and both applications have read their respec-
tive enable-complete entries from their data queues, the target application
program calls the QOLSETF API to activate a filter. The filter activated then
identifies the protocol of the local X.25 service user. This filter is used by the
user-defined communications support on System B to route incoming calls. The
actual filter type activated is X'00” (for X.25 PID) and its associated value is X"21.
For more information concerning filters, see “QOLSETF” on page 2-10. After
activating the X’21” filter, the target application will wait for the source applica-
tion to request a connection.

Establishing a Connection

The source application will call the QOLSEND API with a X"B000” operation in its
output data buffer to establish an SVC to the target application. Included in the
first byte of the call user data is the protocol ID of the target application, or X"21".
When the user-defined communications support on System B sees the incoming
call packet with the first byte of user data equal to a previously activated filter,
the call is routed to the process responsible for activating that filter. In this
case, the target application will receive notification of an incoming call since it
previously activated filter X'21".

The target application, waiting for the incoming call by design, calls the
QOLRECYV API to receive a X'B201’" operation with incoming call data. After
doing so, the target application will accept the X.25 connection by calling the
QOLSEND API with a X’"B400" operation in its output data buffer. See
“QOLSEND” on page 2-17 for more information.

Sending Data

As mentioned previously, once the peer connection has been established
between the source and target applications running on System A and System B
respectively, the file transfer takes place. The source application reads records
from a local file and calls the QOLSEND API with X’0000" operations in its output
data buffer to transfer the file data to System B. This process continues until the
entire contents of the source file has been sent to System B.

Receiving Data

After accepting the X.25 connection, the target application waits until its data
queue receives incoming-data entries. When one is read from the queue, the
QOLRECV API is called to determine what operation was received. Barring
failure, the target application should receive a X’0001" operation as a result of
the QOLRECV API call. The data contained in the input data buffer will be the
file data received from System A. When receiving the file data, the target appli-
cation will write the data to a local file. This process continues until the entire
contents of the file is received from System A. By design, the target application
assumes the file transfer is complete when an operation other than a X’0001’
operation is received after a successful call to the QOLRECV API. Most likely,
the first non-X’0001" operation received will be X’"B301" operation, signalling that
the user-defined communications support running on System B received an SVC
clear indication.

4-2 AS/400 System Programmer’s Communications Interface Guide

Clearing the Connection and Disabling Links

Once the entire contents of the file has been read and sent to System B, the
source application calls the QOLSEND API with a X’"B100” operation in its output
data buffer to clear the X.25 connection. Afterwards, the source application
closes its local file, disables its local link by calling the QOLDLINK API, and
ends.

When the source application program sends a X’B100” operation, it causes the
target application to receive a X’B301” operation. When receiving this operation,
the target application program will call the QOLSEND API with a X’"B100" opera-
tion to locally close the connection between itself and the user-defined commu-
nications support. Afterwards, the target application closes its local file, disables
its local link by calling the QOLDLINK API, and ends.

Using Timers and the Data Queue Support

Both the source and target application programs use the user-defined commu-
nications support timer service to manage the reception of certain operations.
This is accomplished by setting a timer before checking the data queue for an
entry. For example, the target application sets a timer to manage the reception
of file data from the source application. If the timer expires, the user-defined
communications support will place a timer-expired entry on the application’s
data queue. By design the target application assumes when receiving this entry
that the source application ended abnormally and it will, therefore, take appro-
priate action to end itself.

C/400 Compiler Listings

Below are listings of the source and target applications described in the pre-
vious paragraphs. Note the block numbers in the listings. Detailed explanations
of each block will follow.

Source Application on System A Listing

As mentioned above, the source application in this example is the initiator of all
meaningful work. In other words, the source program listed on the following
pages performs the following:

» Calls the QOLQLIND API to get local X.25 line information
* Opens the local file
e Calls the QOLELINK API to establish a link for communications

e Calls the QOLSEND API with X’B000’ operation to establish a peer (SVC)
connection

* Sends the local file to the target system via X’0000" operations

» Calls the QOLSEND API with X'B100’ operation to clear the peer (SVC) con-
nection

* Calls the QOLDLINK API to disable the link
* Calls the QOLTIMER API to manage the reception of data queue entries

Chapter 4. Application Programming Examples 4-3

5738CX1 V2RIMO 910329

Program name
Library name :
Source file:
Library name :
Source member name
Text Description
Compiler options

Language level options
Source margins:
Left margin :
Right margin
Sequence columns:
Left Column :
Right Column
Define name

Print file
Library name
Message flagging Tevel
Compiler message:
Message limit
Message limit severity :
Replace program object
User profile
Authority
Target Release :
INDEBUG options :
Last change
Source description
Compiler

IBM SAA C/400

$1016897

*x kK kK X %

UDCS_APPLS/SOURCE 12/19/90 88:51:20 Page
**xxx*x PROLOG
SOURCE
UDCS_APPLS
QCSRC
UDCS_APPLS
SOURCE
Source Application Example
*SOURCE *NOXREF *SHOWUSR

*NOPPONLY ~ *NODEBUG *GEN

*NOEXPMAC
*LOGMSG

*SHOWSYS *NOAGR

*NOSECLVL

*NOSHOWSKP
*PRINT

80

*NOLIST *NOATR *NODUMP *NOOPTIMIZE *NOALWBND
*NOANNO
QSYSPRT

*LIBL

]

*NOXREF *GEN

*NOMAX

30

*YES

*USER

*LIBCRTAUT

*CURRENT

I don't know

90/12/19 08:49:37

Source Application Example
IBM SAA C/400 Compiler

Figure 4-1 (Part 1 of 26). C/400 Compiler Listing for the Source Application

4-4 As/400 System Programmer’s Communications Interface Guide

5738CX1 V2RIMB 918329 IBM SAA C/460 UDCS_APPLS /SOURCE $1016897 12/19/90 @8:51:20 Page 2
kXK X kX K SOURCE * kK Xk X X

Line STMT SEQNBR INCNO
Fooatioodoaaabo 200004 P O TR T O I TTETY S UL s : ST U

1 | frxxx el alalilai KRRKKIIKK KRRKRIRKKRAKRKIRKKIKR | | 1
2 | /A% *x [| 2
3 | /** Program Name: Source Application Program Example ** f | 3
4 | /** **/ | 4

5 l /**k **/ ‘ 5

6 |/** Function: ** f | 6

7 |/** This is the source application program example that uses ** / | 7
8 |/** X.25 services provided by the user-defined comminications *%/ | 8
9 |/** support to transfer a simple file to the target application **/ | 9
10 |/** program running on system B. This program performs the **/ | 10
11 | /** following: *x | 11
12 | /%> 01. Open the source file name INFILE. %/ | 12
13 | /%> 02. Call QOLQLIND API to obtain local line information. **/ . | 13
14 | /** 03. Enable a link. *x | 14
15 | /** 04. Send a 'BOOB'X operation (call request). *% [| 15
16 | Whelad 05. Receive a 'BOO1'X operation (call confirmation). **/ | 16
17 | /% 06. Read record(s) from the file opened in step 1). and **/ | 17
18 | /** send '0001'X operation(s) to transfer the file to ** | 18
19 | /x> the target application program. *%/ | 19
20 (Waad 07. Send a 'B10@'X operation (clear call request). *%/ | 20
21 | /x* 8. Receive a 'B101'X operation. **% f | 21
22 | fx* 09. Disable the Tink enabled in step 3). *%/ | 22
23 |/** *% [I 23
24 |/** A data queue will be actively used to manage the operation **/ | 24
25 |/** of this program. Data queue support will be used to monitor **/ | 25
26 |/** for the completion of the enable and disable routines, as ** [| 26
27 |/** well as timer expirations and incoming data. Timers are **x [| 27
28 |/** used to ensure that there will never be an infinite wait on **/ | 28
29 |/** the data queue. If a timer expires, the link enabled will **/ | 29
30 |/** be disabled and the program will stop. *x | 30
31 | fx* *x f | 31
32 |/** *% [| 32
33 | /%* Inputs: xx f | 33
34 | /** The program expects the following input parameters *x f | 34
35 | /** Line Name: This is the name of the 1ine description **% [| 35
36 | fx* that will be used to call the QOLELINK API. **/ | 36
37 | /x* The Tine must be an X.25 line with at Teast **/ | 37
38 | /x* one SVC of type *SVCBOTH or *SVCOUT. **% [| 38
39 '/*w *% f l 39
40 | /%% CommHandle: This is the logical name that will be used **/ | 40
41 | /** to identify the link enabled. *%/ | 41
42 | /xx *x | 42
43 | /x> Remote DTE Address: The is the Local Network Address **x [| 43
a4 | /** of System B. *x f | 44
45 |/** *% [| 45
46 | /x* *x/ | 46
47 | /%* Outputs: *x / | 47
48 | /** Current status of the file transfer will be provided when ** [| 48
49 | /** running this program. If an error should occur, then a *x [| 49
50 | /** message will be displayed indicating where the error occurred **/ | 50
51 |/** and the program will end. If the program completes *% [| 51
52 | /** successfully, a "successful completion" message will he *k f | 52

Figure 4-1 (Part 2 of 26). C/400 Compiler Listing for the Source Application

Chapter 4. Application Programming Examples 4-5

5738CX1 V2RIME 918329
Line STMT

53
54
85
56
57

DO N U W R N

—

IBM SAA C/400 UDCS_APPLS/SOURCE $1016897 12/19/90 08:51:20
SEQNBR
oS P DA - D . R Ty O O T I R T A o8 haln 9L
| /** posted. ; *x f | 53
W *% f | 54
| frxnxx o REARXRARIKKKRIR ARSI AR KK %/ | 55
I 56
|#include "header” | 57
| 58
[#include "typedefs" | 59
| | 58
| | 58
| | 62
|#include <stdio.h> | 63
[#include <stdlib.h> | 676
|#include <signal.h> | 798
|#include <xxasio.h> | 922
|#include <xxcvt.h> | 970
[#include <string.h> | 999
I#i.ndude <ctype.h> | 1095
1
| | 1192
|typedef struct queuein | 1193
| { | 1194
| char Tibrary??(1877); | 1195
| char name??(1027?); | 1196
| char option; | 1197
f } queuein; | 1198
| | 1199
|typedef struct namelib | 1200
| | 1201
| char library??2(10??); | 1202
| char name??(10??); | 1203
| } namelib; | 1204
I | 1205
|typedef _Packed struct formatl | 1206
I | 1207
| char type; | 1208
| char reservedl; | 1209
| unsigned short logchanid; | 1210
| unsigned short sendpacksize; | 1211
| unsigned short sendwindsize; | 1212
| unsigned short recvpacksize; | 1213
| unsigned short recvwindsize; | 1214
| char reserved2??(727); | 1215
| char dtelength; | 1216
| char dte??(162?); | 1217
| char reserved3??(8??); | 1218
| char dbit; | 1219

Figure 4-1 (Part 3 of 26). C/400 Compiler Listing for the Source Application

4-6 AS/400 System Programmer’s Communications Interface Guide

Page
INCNO

RN MNRNRNRNNDNNDN -

RPN NDNDNDRNDND NN

3

5738CX1 V2R1Me

Line

39
40
41

STMT

*-

}

I
I
l
|
:
|
|
|
|
|
|
|
I
|
|
:
|
|
|
|
|
|
|
:
|
|
|
|
|
|
|
I
|
|
|
|
I
|
I
|
I
|
|
|
I

910329 IBM SAA C/400

UDCS_APPLS/SOURCE $1016897 12/19/90 ©8:51:20 Page

SEQNBR INCNO

R R LR Y SRRt PO NN SETRY. TRRPL N

char reserved4??(727); | 1228
char cug; | 1221
char cugid; | 1222
char reverse; | 1223
char fast; | 1224
char faclength; | 1225
char facilities??(109??); | 1226
char reserved5??(48??); | 1227
unsigned short calllength; | 1228
char callud??(12877); | 1229
char reserved6??(12827); | 1230
unsigned char misc??(422); /* control flags */ | 1231
unsigned int maxasmsize; | 1232
unsigned short autoflow; | 1233
formatl; | 1234
| 1235

typedef _Packed struct format2 | 1236
{ | 1237
unsigned short type; | 1238
char cause; | 1239
char diagnostic; | 1248
char reserved??(47?); | 1241
char faclength; | 1242
char facilities??(109??); | 1243
char reserved2?7(482?); | 1244
unsigned short Tength; | 1245
char userdata??(1282?); | 1246
} format2; | 1247
| 1248

typedef _Packed struct desc | 1249
{ | 1250
unsigned short length; | 1251
char more; /*These 4 char's are only used for X.25.*%/ | 1252
char qualified; | 1253
char interrupt; | 1254
char dbit; | 1255
char reserved??(26??): | 1256
} desc; | 1257
| 1258

typedef _Packed struct 1lcheader | 1259
| 1260

unsigned short headerlength; | 1261
char macaddr??(6??); | 1262
char dsap; | 1263
char ssap; | 1264
char priority; | 1265
char priorctl; | 1266
unsigned short routien; | 1267
unsigned short userdtalen; | 1268
char data??(12?); | 1269
} 1cheader; | 1270
| 1271

typedef _Packed struct espec | 1272
{ | 1273

Figure 4-1 (Part 4 of 26). C/400 Compiler Listing for the Source Application

Chapter 4. Application Programming Examples

L I N I S N N S L It S R R R R R R R N I N N N N N N S N SRS S SR SN SRS IS IV SIS S SIS EN]

21

4-7

5738CX1 V2RIMO 918329 IBM SAA C/460 UDCS_APPLS/SOURCE $1016897 12/19/90 ©8:51:20 Page 22

Line STMT SEQNBR ~ INCNO
AT PP P R . P R CTTTY- T PN FOT D S CRRRT: TRUL S R

93 | char reserved??(2?2?); | 1274 2

94 | unsigned int hwecode; | 1275 2

95 | unsigned int timestamphi; | 1276 2

96 | unsigned int timestamplo; | 1277 2

97 | unsigned int elogid; | 1278 2

98 | . char reserved2??(1027); | 1279 2

99 | char flags; | 1280 2
100 | char cause; | 1281 2
101 | char diagnostic; | 1282 2
102 | char reserved3; | 1283 2
103 | unsigned int erroroffset; | 1284 2
104 | char reservedd??(42?); | 1285 2
105 |} espec; | 1286 2
106 | | 1287 2
107 |typedef struct tahleentry | 1288 2
108 | { | 1289 2
109 | char hand1e?7(1077); | 1290 2
110 | char type; | 1291 2
111 | char inbuff??2(207?); | 1292 2
112 | char indesc??(202?); | 1293 2
113 | char outhuff??(202?); | 1294 2
114 | char outdesc??(207?); | 1295 2
115 | unsigned int totaldusize; | 1296 2
116 | struct tableentry *next; | 1297 2
117 | } tableentry; | 1298 2
118 | | 1299 2
119 | /x***xxx% Data structure for X.25 line KREKRKRRNK [| 1300 2
120 | [xxxxxx% descriptions as returned by QOLQLIND. *#x*xxx/ | 1301 2
121 | . | 1302 2
122 |typedef struct x25info | 1303 2
123 I { | 1304 2
124 | char addrien; | 1305 2
125 | char addr?2(92?); | 1306 2
126 | char addrtype; | 1307 2
127 | char insert; | 1308 2
128 | char modulus; | 1309 2
129 | char dtedce; | 1310 2
130 | unsigned short maxsend; | 1311 2
131 | unsigned short maxrecv; | 1312 2
132 | unsigned short defsend; | 1313 2
133 | unsigned short defrecv; | 1314 2
134 | char windowsend; | 1315 2
135 | char windowrecv; | 1316 2
136 | unsigned short numlc; | 1317 2
137 | char 1cinfo??(4??); | 1318 2
138 |} x25info; | 1319 2
139 | | 1320 2
140 |typedef struct querydata | 1321 2
141 | | 1322 2
142 | char header??(122?); /* 1ine header info */ | 1323 2
143 | x25info x25data; /* preliminary data */ | 1324 2
144 |} querydata; | 1325 2

3 |#include "hexconv" | 1326 1

1 |#include <stdio.h> | 1327 15

Figure 4-1 (Part 5 of 26). C/400 Compiler Listing for the Source Application

4-8 AS/400 System Programmer’s Communications Interface Guide

5738CX1 V2RIMG 918329 IBM SAA C/400 UDCS_APPLS /SOURCE $1016897 12/19/96 ©8:51:20 Page 23

Line . STMT SEQNBR INCNO
T O B T O R R T O T LR LT TR E IRPOy SRR s Y TR TS IR T R

2 : ' | 1532 15
3 |char *inttohex(decimal,hex) /*Converts a 4-byte integer into a | 1533 15
4 string of 2 uppercase hex characters.*/ | 1534 15
5 Junsigned int decimal; | 1535 15
6 |char *hex; | 1536 15
7 | | 1537 15
8 1{ | 1538 15
9 1 | sprintf(hex,"%.2X",decimal); | 1539 15
10 2 | return(hex); | 1548 15
1 1} | 1581 15
12 | | 1542 15
13 |unsigned int hextoint(hex) /*Converts a string containing hex | 1543 15
14 | digits into a 4-byte integer. */ | 1544 15
15 [char *hex; | 1545 15
16 I{ | 1546 15
17 | int decimal; | 1547 15
18 | | 1548 15
19 1 | sscanf(hex,"%x",&decimal); | 1549 15
20 2 | return(decimal); | 1550 15
21 ”E | 1551 15
4 | | 1552 1
5 |#pragma linkage (QOLDLINK, 0S) | 1553 1
6 | #pragma- 1inkage (QOLELINK, 0S) | 1554 1
7 | #pragma Tinkage (QOLSEND, 0S) | 1555 1
8 |#pragma Tinkage(QOLRECV, 0S) | 1556 1
9 |#pragma 1inkage (QUSPTRUS, 0S) | 1557 1
18 |#pragma linkage(QRCVDTAQ, 0S) | 1558 1
11 |#pragma linkage (QCLRDTAQ, 0S) | 1559 1
12 |#pragma linkage (QOLTIMER, 0S) | 1560 1
13 |#pragma 1inkage (QOLSETF, 0S) | 1561 1
14 |#pragma linkage(QOLQLIND, 0S) | 1562 1
15 | | 1563 1
16 |FILE *screen; | 1564 1
17 |FILE *rptr; | 1565 1
18 - |FILE *fptr; | 1566 1
19 | | 1567 1

Figure 4-1 (Part 6 of 26). C/400 Compiler Listing for the Source Application

Chapter 4. Application Programming Examples 4-9

$1016897 12/19/90 088:51:20

5738CX1 V2RIM@ 910329 IBM SAA C/400 UDCS_APPLS/SOURCE
Line
L B R Y- . e T L P - PN TR A Oy U R R T TS M,
20 lextern void QOLDLINK(int *, int *, char *, char *};
3
21 |
22 lextern void QOLELINK (int *, dint *, int *, int *, int *, int *,\
23 | char *, char *, char *, char *, int *, char *,\
24 | char *, char *, char *);
25 |
26 {extern void QOLSEND (int *, int *, void *, int *, int *, int *,\
27 | char *, unsigned short *, int *);.
28 |
29 |extern void QOLRECY (int *, int *, int *, int *, unsigned short *,\
30 | int *, char *, void *, char *);
31 |
32 Jextern void QOLSETF (int *, int *, int *, char *);
33 | .
34 lextern void QOLTIMER (int *, int *, char *, char *, char *, char *,\
35 | int *, int *, int *, char *, char *);
36 |
37 lextern void QUSPTRUS (void *, void *);
38 |
39 lextern void QRCVDTAQ (char *, char *, char *, void *, char *,\
40 | char *, char *, char *, char *, char *);
41 |
42 lextern void QCLRDTAQ (char *, char *);
43 |
44 |extern void QOLQLIND(int *, int *, int *, void *, char *, char *);
45
46 | /***t******r* Typedef Declarations *******x***********/
47 |
48 |typedef struct usrspace
49 |
58 | char name??(102?);
51 | char library??(1027?);
52 | } usrspace;
4
53 1
54 [typedef struct enableparms /* Enable parameters */
55 |
56 | int retcode, /* Output */
57 | reason, /* Output */
58 | tdusize, /* Output */
59 | numunits, /* Output */
68 | maxdtalan, /* Output */
61 | maxdtax25, /* Input */
62 | keylength; /% Input %/
63 |char keyvalue??(256?7), /* Input- */
64 | Tinename?? (1072); /* Input *f
65 [} enableparms;
66 |
67 |typedef struct disableparms /* Disable parameters */
68 |
69 | int retcode, /* Output */
78 1 reason; /* Output */
71 | char vary; /* Input *f
72 | } disableparms;
73 |
Figure 4-1 (Part 7 of 26). C/400 Compiler Listing for the Source Application

4-10 As/400 System Programmer’s Communications Interface Guide

SEQNBR

1568

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585

1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621

Page
INCNO

1

el i e e e e e e el e e e e e e e e I el o SR N S

el o e e e e e e e R N

24

Line

74
75
76

122
123
124
125
126
127

5738CX1 V2RIMO 910329 IBM SAA C/400 UDCS_APPLS/SOURCE $1016897 12/19/90 ©8:51:20 Page 25
STMT SEQNBR INCNO
L O A P RS- TR P O L U CUTRT: TR SO H
| typedef struct setfparms /* Set Filters parameters */ | 1622 1
| 1623 1
| int retcode, /* Output */ | 1624 1
| reason, /* Output */ | 1625 1
| erroffset; /* Output */ | 1626 1
| '} setfparms; | 1627 1
| . | 1628 1
| typedef _Packed struct hdrparms /* Filter header */ | 1629 1
| | 1630 1
| char function; | 1631 1
| char type; | 1632 1
| unsigned -short number; | 1633 1
| unsigned short length; | 1634 1
| char filters??2(127?); | 1635 1
|~} hdrparms; | 1636 1
| | 1637 1
| typedef _Packed struct x25filter /* X.25 filter */ | 1638 1
| | 1639 1
| char pidlength; | 1640 1
| char pid; | 1641 1
| char dtelength; | 1642 1
| char dte??(12?2?); | 1643 1
| char flags; | 1644 1
|} x25filter; | 1645 1
| | 1646 1
|typedef struct sendparms /* Send parameters */ | 1647 1
I { | 1648 1
| espec errorspecific; /* Output */ | .~ 1649 1
| int retcode, /* Output */ | 1650 1
| reason, /* Output */ | 1651 1
| newpcep, /% Output */ | 1652 1
| ucep, /* Input */ | 1653 1
| pcep, /* Input */ | 1654 1
| numdtaelmnts; /* Input */ | 1655 1
Junsigned short operation; /* Input */ | 1656 1
| '} sendparms; | 1657 1
| | 1658 1
|typedef struct recvparms /* Receive parameters */ | 1659 1
| { | 1660 1
| espec errorspecific; /* Output */ | 1661 1
| int retcode, /* Output */ | 1662 1
| reason, /* Output */ | 1663 1
| newpcep, /* Output */ | 1664 1
| ucep, /* Output */ | 1665 1
| pcep, /* Output */ | 1666 1
| numdtaunits; /* Output */ | 1667 1
| char dataavail; /* Output */ | 1668 1
Junsigned short operation; /* OQutput */ | 1669 1
| '} recvparms; | 1670 1
| | 1671 1
|typedef struct timerparms /* Timer parameters */ | 1672 1
| | 1673 1
| int retcode, /* Output */ | 1674 1
| reason, /* Output */ | 1675 1
Figure 4-1 (Part 8 of 26). C/400 Compiler Listing for the Source Application
Chapter 4. Application Programming Examples 4-11

5738CX1 V2RIME 9108329 IBM SAA C/400 UDCS_APPLS/SOURCE $1016897 12/19/90 08:51:20 Page 26

Line STMT SEQNBR INCNO
T O B O R Y T O T R S . N R T TR
128 | interval, /* Input */ | 1676 1
129 | establishcount, /% Input */ | 1677 1
130 | keylength; /* Input */ | 1678 1
131 | char handleout??(8?7), /* Output */ | 1679 1
132 | handlein??(82?), /* Input */ | 1688 1
133 | operation, /* Input */ | 1681 1
134 | keyvalue??(25622), /* Input */ | 1682 1
135 | userdata??(60??); /* Input */ | 1683 1
136 | } timerparms; | 1684 1
137 | | 1685 1
138 | | 1686 1
139 |typedef struct especout | 1687 1
140 | | 1688 - 1
141 | char hwecode??(82?); | 1689 1
142 | char timestamp??(162?); | 1690 1
143 | char elogid??(8??); | 1691 1
144 | char fail; | 1692 1
145 | char zerocodes; | 1693 1
146 | char gsysopr; | 1694 1
147 | char cause??(2??); | 1695 1
148 | char diagnostic??(2?2?); | 1696 1
149 | char erroffset??(62?); | 1697 1
150 | '} especout; | 1698 1
151 | | 1699 1
152 |typedef struct glindparms /* Query line parameters */ | 1700 1
153 | | 1701 1
154 | int retcode, /* Output */ | 1702 1
155 | reason, /* Output */ | 1703 1
156 | nbytes; /* Output */ | 1704 1
157 | char userbuffer??(25622); | 1785 1
158 | char format; | 1706 1
159 |} qlindparms; | 1707 1
160 | | 1708 1
161 |typedef _Packed union content /* Queue support parameters */ | 1709 1
162 | | 1710 1
163 | _Packed struct other | 1711 1
164 | { | 1712 1
165 | char commhand1e??(10??); | 1713 1
166 | char reserved??(582?); | 1714 1
167 | } other; | 1715 1
168 | _Packed struct enable | 1716 1
169 | | 1717 1
170 | char commhandle??(102?); | 1718 1
171 | char status; | 1719 1
172 | char reserved??(5727?); | 1720 1
173 | } enable; | 1721 1
174 | _Packed struct timer | 1722 1
175 | { | 1723 1
176 | char timerhandl1e??(82??); | 1724 1
177 | char userdata??(60??); | 1725 1
178 | } timer; | 1726 1
179 | } content; | 1727 1
180 |] 1728 1
181 |typedef _Packed struct gentry /* Queue parameters */ | 1729 1

Figure 4-1 (Part 9 of 26). C/400 Compiler Listing for the Source Application

4-12 AS/400 System Programmer’s Communications Interface Guide

5738CX1 V2RIM@ 910329 IBM SAA C/400 UDCS_APPLS/SOURCE $1016897 12/19/90 08:51:20
Line STMT SEQNBR
LT ST DU S SIS SUUS: FUIE JECUY. SN NI - S S Y e S S LR - TETRS SRR [T
182 | g | 1730
183 | char type??(108??); | 1731
184 | unsigned short msgid; | 1732
185 | content message; | 1733
186 | char key??(2567?); | 1734
187 |} gentry; | 1735
188 | | 1736
58 | 1737
59 |veid senddata(sendparms *a, char *b, desc *c, char *d, char *e, int f); | 1738
60 | 1739
61 |void sndformatl(sendparms *a,char *b, char *c, char *d, gqlindparms *f); | 1740
62 | 1741
- 63 |void sndformat2 (sendparms *a, char *b, char *c); | 1742
64 | 1743
65 |void setfilters (hdrparms *a); | 1744
66 | 1745
67 |void byte (char *a, int b, char *c, int d); | 1746
68 | | 1747
69 |void printespec (espec *a); | 1748
70 | 1749
71 Jvoid settimer(unsigned short *a,char *b,gentry *c,usrspace *d,char *e); | 1750
72 | | 1751
73 |void dequeue (int a, char *b, gentry *c, usrspace *d); | 1752
74 | 1753
75 |void x251ind (qlindparms *a, char *h); | 1754
76 | 1755
77 lint getline (char *a, int b, FILE *c); | 1756
78 | 1757
79 |void disablelink (disableparms *a, char *h, usrspace *c); | 1758
80 : | 1759
81 Jvoid handler (disableparms a, usrspace *h); | 1768
82 | | 1761
83 |sigdata_t *sigdata(void); | 1762
84 | | 1763
85 falaialalaialaiatalaistaiaiatale KRRKKRKRKKRKK KRRKIKKAK *k [| 1764
86 I /*************** start Mai n Program ****’k**************/ ! 1765
87 | [Roxkd KSR A KK A KK KAK KhrKX KRRKRKKKKKIKKKRK [| 1766
88 | | 1767
89 Imain (int argc, char *argv??(2?)) | 1768
90 1{ | 1769
91 | 1770
92 I /*****’k****** Variable Declarations *******************/ I 1771
93 | | 1772
94 | usrspace inbuff, /* Input Data Buffer */ | 1773
95 | indesc, /* Input Buffer Descriptor */ | 1774
96 | outhuff, /* Output Data Buffer */ | 1775
97 | outdesc, /* Output Buffer Descriptor */ | 1776
98 | gname; /* Data Queue */ | 1777
99 | | 1778
100 | int length, /* Data Queue key legth */ | 1779
101 | linesiz, /* Length of Tine that is read in */ | 1780
102 | i= 0; /* counter */ | 1781
183 | unsigned short expctid; /* Message ID that is expected */ | 1782
104 | char commhandle??(107?), /* Command Line Parameter */ | 1783

Figure 4-1 (Part 10 of 26). C/400 Compiler Listing for the Source Application

Page 27
INCNO

-

Chapter 4. Application Programming Examples 4-13

Line

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

STMT

10
11
12

|
|
|
|
|
|
|
|
I
|
|
|
|
I
|
|

5738CX1 V2RIME 918329 IBM SAA (/400 UDCS_APPLS/SOURCE $1016897 12/19/90 08:51:20
SEQNBR
P O B CE RN Y ZRREE P R R D - TR S ; DU J SN L P [

huffer, / Pointer to buffer */ | 1784
rmtdte?? (1822), /* Remote DTE read in */ | 1785
1ine??(13227), /* Line to read in */ | 1786
key??(25627?); /* Data Queue key identifier */ | 1787

desc *descriptor; /* Pointer to buffer descriptor */ | 1788
| 1789

/** definitions for the API functions **/ | 1798
enableparms enable; | 1791
disableparms disable; | 1792
sendparms send; | 1793
recvparms recv; | 1794
setfparms setf; | 1795
timerparms timer; | 1796
glindparms glind; | 1797
gentry datag; | 1798
hdrparms *header; | 1799
| 1800

| 1801

JrRrRxrk Annndddddd. ... there offll Fxxxxaxrrxx/ | 1802
| 1803

J***--~ Open the file to send to remote side ———n kK] | 1804
if ((fptr = fopen("UDCS_APPLS/INFILE(INFILE))", "r")) == | 1805
{ | 1806
printf("Unable to open source input file in UDCS_APPLS LIB.\n"); | 1807
printf("The Program was terminated.\n\n"); | 1808
return; | 1809

| 1810

[***--- Open the display file as our input screen. ----**/ | 1811
if ((screen = fopen("ERRORSPEC", "ah+ type=record")) == NULL) | 1812
{ | 1813
printf("Unable to open display file.\n"); | 1814
printf("The Program was terminated.\n\n"); | 1815
return; | 1816

} | 1817

| 1818

/** set the exception handler **/ | 1819
signal (SIGABRT,&handler); | 1820
| 1821

/** Clear the command line Parameters **/ | 1822
strncpy(enable.linename, " ", 18); /* Clear linename */ | 1823
strncpy(commhandle, " v, 10); /* Clear Commhandle */ | 1824
strncpy (rmtdte, " ",17); /* Clear Remote DTE */ | 1825
| 1826

/** Receive command line Parameters **/ | 1827
strncpy (enable.linename, argv??(12?), strlen(argv??(12?))); | 1828
strncpy (commhandle, argv??(2??), strlen(argv??(22?))); | 1829
strncpy (rmtdte, argv??(3??), strlen(argv??(32?))); | 1830
rmtdte?? (strlen(argv??(322))??) = '\0'; | 1831
) | 1832

/** Initialize the user spaces **/ | 1833
strncpy (inbuff.1ibrary, "UDCS_APPLS", 10); /* Input Buffer */ | 1834
strncpy (inbuff.name, "SOURCEIBUF", 18); | 1835
strncpy(indesc.library, "UDCS_APPLS", 10); /* Input B Desc */ | 1836
strncpy (indesc.name, "SOURCEBDSC", 10); | 1837

158

Figure 4-1

(Part 11 of 26). C/400 Compiler Listing for the Source Application

4-14 AS/400 System Programmer’s Communications Interface Guide

Page
INCNO

28

5738CX1 V2R1MG 918329 IBM SAA C/400

Line

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

199

201
202
203
204
205
206
207
208

209
210
211
212

STMT

21
22
23
24
25
26

27

36

38
39

40
41

42
43
44

|
!
|
|
[
|
|
|
!
|
|
|
!
|
|
|

|
|
!

UDCS_APPLS/SOURCE $1016897

T P S ETTTY- Tt Jc R SR S TN TOTE S TS I S T -

strncpy (outhuff.library, "UDCS_APPLS", 18); /* Output Buffer*/
strncpy (outbuff.name, "SOURCEOBUF", 10);

strncpy (outdesc.library, "UDCS_APPLS", 18); /* Output B Desc */
strncpy(outdesc.name, "SOURCEODSC", 18);

strncpy(gname.library, "UDCS_APPLS", 18); /* Data queue */
strncpy (qname.name, "X25DTAQ ", 18);

[xxxx% petrieve the line description information *xx*xx/
x251ind (&gqlind, enable.linename);

if ((qlind.retcode != 8) || (qlind.reason != 0))
{

printf("Query line description failed.\n");
printf("Return code = %d\n", qlind.retcode);
printf("Reason code = %d\n\n", qlind.reason);
return;

}

Jx***% Hard Code the QOLELINK Input Parameters **%xxx/
enable.maxdtax25 = 512;
enable.keylength = 3;

.strncpy (enable.keyvalue, "SND", 3);

7

KKK KhKKK KAKKKKKKK * nnAAAAnnnn/

/************ Enab]e the]ine *******************/

/ kel HRRKRKRRKRKRIRKRIAK *RKRKK

QOLELINK (&(enable.retcode), &(enable.reason), &(enable.tdusize),\
&(enabhle.numunits), &(enable.maxdtalan), &(enable.maxdtax25),\
(char *)&inbuff, (char *)&indesc, (char *)&outbuff,\
(char *)&outdesc, &(enable.keylength), enahle.keyvalue,\
(char *)&gname, enable.linename, commhandle);

if ((enable.retcode != 0) || (enable.reason != 8))

printf("Line %.10s with Commhandle %.10s was NOT ENABLED.\n",\
enable.Tinename, commhandle);
printf("Return code = %d\n*, enabie.retcode);
printf("Reason code = %d\n\n", enable.reason);
return;
o }

[Hmmmmmmee Set a timer for Enable Link -----een- *% [
expctid = OxFOFO;

settimer(&expctid, "Enable", &datagq, &gname, commhandle);
if (expctid != OXFOFO)

disablelink (&disable, commhandle, &gname);
return;

}
a

[JRRIRIKKR KK KEKKKKKKRKKRK xR * * KAKKK * * /

/************** Set up a ca]] Request Packet *******************/

/ hRKK KAKKKKKAKK KRKKRKKKRKKRKKK KKK KKRK x/

Figure 4-1 (Part 12 of 26). C/400 Compiler Listing for the Source Application

12/19/90 ©8:51:20

SEQNBR

1838
1839
1840
1841
1842
1843
1844
1845
1846
1847

Page 29
INCNO

Chapter 4. Application Programming Examples 4-15

5738CX1 V2RIMO 910329 IBM SAA C/400 UDCS_APPLS/SOURCE S$1016897 12/19/99 08:51:20
Line STMT SEQNBR
[T U P S ST N S S O EE TS ERT L SRR - P By PP +o.0.800 04 [
213 | | 1892
214 | /*%xx get pointers to the user spaces. X¥x¥xx/ | 1893
215 47 | QUSPTRUS(&outbuff, &buffer); | 1894
216 48 | QUSPTRUS(&outdesc, &descriptor); | 1895
217 | | 1896
218 49 | send.ucep = 26; /* set the UCEP number */ | 1897
219 50 | send.operation = 8xB0AQ; /* send a call request */ | 1898
220 51 | send.numdtaelmnts = 1; /* send one data unit */ | 1899
221 | ' | 1900
222 (I R Send the packet — ---c---ao ** [| 1901
223 52 | sndformatl (&send, buffer, rmtdte, commhandle, &qlind); | 1902
224 | | 1903
225 53 | if ((send.retcode != 0) || (send.reason != 8)) | 1904
226 | | 1905
227 54 | printf("Call request packet not sent\n"); | 1906
228 55 | printf("Return code = %d\n", send.retcode); | 19987
229 56 | printf("Reason code = %d\n", send.reason); | 1908
230 57 | printf("new pcep %d\n", send.newpcep); | 1909
231 58 | printespec(&(send.errorspecific)); | 1910
232 | | 1911
233 59 | disablelink (&disable, commhandle, &gname); | 1912
234 60 | return; | 1913
235 | } | 1914
236 | | 1915
237 | | 1916
238 l /**********’(****‘k‘k**/ I 1917
239 | [r*xxxxxkxxkx Receive the Call CONFIRMATION packet KkKKIKKK [| 1918
240 I /******‘k******k**‘k*‘k*********************************’k************/ I 1919
241 | | 1920
242 | [remmmmeee Set a timer to receive a message --------- ** | 1921
243 61 | expctid = OxFOF3; | 1922
244 62 | settimer(8expctid, “Rcv Call", &datag, &gname, commhandle); | 1923
245 63 | if (expctid != OXFOF3) | 1924
246 | | 1925
247 64 | disablelink (&disable, commhandle, &gname); | 1926
248 65 | return; | 1927
249 | } | 1928
250 | | 1929
251 | /** Get pointer to use space **/ | 1930
252 66 | QUSPTRUS (&inbuff, &buffer); | 1931
253 67 | QUSPTRUS (&indesc, &descriptor); | 1932
254 | | 1933
255 | QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\ | 1934
256 | &(recv.pcep), &(recv.operation), &(recv.numdtaunits),\ | 1935
257 68 | &(recv.dataavail), &(recv.errorspecific), commhandle); | 1936
258 | | 1937
259 69 | if ({recv.retcode != 8) || (recv.reason {= 0)) | 1938
260 | | 1939
261 70 | printf("Recv Call reqst resp failed\n"); | 1940
262 71 | printf("return code %d\n", recv.retcode); | . 1941
263 72 | printf("reason code %d\n", recv.reason); | 1942
264 73 | printespec(&(send.errorspecific)); | 1943
265 | | 1944
266 74 | disablelink (&disable, commhandle, &qname); | 1945
Figure 4-1

(Part 13 of 26). C/400 Compiler Listing for the Source Application

4-16 AS/400 System Programmer’s Communications Interface Guide

Page
INCNO

30

Line

267
268
269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
3605
306
367
308
309
310
311
312
313
314
315
316
317
318
319

STMT

75

76

77

79

80

81

82
83

84
85

86
87
88
89
90
92
93
94

95
96

97
98

99

|
|
|
|
|
|
|
|
|
I
|
|

5738CX1 V2RIM@ 918329 IBM SAA C/400 UDCS_APPLS /SOURCE $1016897 12/19/90 08:51:20
SEQNBR
L S PPIE Y- JNNE TR S S S T TUNNUE JORTON . . UMY SR TN - PO JONN D

return; | 1946

| 1947

| 1948

/* Interpret the Received Operation */ | 1949
if (recv.operation != 0xBBO1) | 1950
| 1951

printf("Recvd opr %x instead of opr B8OI1\n", recv.operation); | 1952
disablelink (&disable, commhandle, &gname); | 1953
return; | 1954

) | 1955

| 1956

printf("We have an X.25 SVC connection\n\n"); | 1957
| 1958

| 1959

Y alaialalaiatalaiatalsd KKK RKKKRRKKIRKKRRKKIRRRKKARKKRKKRKKKKRKKKK KK | 1960
JrExxrkxkxrkxk - Send the file to the target application **xxxxx/ | 1961
/**'K'K'k*'k*******‘k**************‘k***'k**'k************‘k'k********‘k*****/ I 1962
| 1963

send.pcep = send.newpcep; /* set the PCEP number */ | 1964
/*************** Send the Mhr LGRF -'ln fi]e DOC ***‘k'k*******'k****/ I igg:
linesiz = getline(line, 92, fptr); /* Get first record **/ | 1967
while (linesiz != 8) | 1968
| 1969

/1(************** Send a Packet []f Data **'k*‘k***’k**‘x***/ l 1970

| 1971

J**xx% Get pointers to the user spaces. *xxxxx/ | 1972
QUSPTRUS (&outbuff, &buffer); | 1973
QUSPTRUS (&outdesc, &descriptor); | 1974

| 1975

send.operation = 0x0000; | 1976
send.numdtaelmnts = 1; | 1977

| 1978

) Al B Send the packet — -—--emmmaoeooo *% [| 1979
senddata (&send, buffer, descriptor, commhandle, line, linesiz); | 1980

| 1981

if ((send.retcode != 0) || (send.reason != 8)) | 1982

| 1983

printf("Data NOT sent for commhandle %.9s\n", commhandle); | 1984
printf("Return code = %d\n", send.retcode); | 1985
printf("Reason code = %d\n", send.reason); | 1986
printf("new pcep %d\n", send.newpcep); | 1987
printespec(&(send.errorspecific)); | 1988

| 1989

disablelink (&disable, commhandle, &qname); | 1990
return; | 1991

| 1992

i=i+1; | 1993
printf("Data %d Sent for commhandle %.9s.\n\n", i, commhandle); | 1994

| 1995

Tinesiz = getline(line, 92, fptr); /** Get next record **/ | 1996
/*** End While Toop ***/ | 1997

| 1998

| 1999

320

Figure 4-1 (Part 14 of 26). C/400 Compiler Listing for the Source Application

Page 31
INCNO

Chapter 4. Application Programming Examples 4-17

5738CX1 V2RIMB 910329 IBM SAA C/480

UDCS_APPLS /SOURCE

$1016897 12/19/90 08:51:20

Line STMT
L B Ty R T CTETL- Tt SO TR Y

321 |/ * KRRIIHRFKXRR KRRKRIRRKKRIRRRAR

322 l /********r**x*** Set up a Clear Request Packet ******************/

323 | frmmnnnnn Kk RRRRAIIRR x /

324 |

325 | /**x** Get pointers to the user spaces. ¥x¥xxx/

326 1080 | QUSPTRUS(&outhuff, &buffer);

327 181 | QUSPTRUS(&outdesc, &descriptor);

328 |

329 102 | send.operation = 0xB100; /** send clear request **/

330 103 | send.numdtaelmnts = 1; /** send one data unit **/

331 | '

332 | Al EEEEE R Send the packet --------- *% [

333 - 104 | sndformat2 (&send, buffer, commhandle);

334 |

335 105 | if ((send.retcode != 0) || (send.reason != 0))

336 |

337 106 | printf("Clear request packet not sent\n");

338 107 | printf("Return code = %d\n", send.retcode);

339 108 | printf("Reason code = %d\n", send.reason);

340 109 | printf("new pcep %d\n", send.newpcep);

341 110 | printespec(&(send.errorspecific));

342 |

343 111 | disablelink (&disable, commhandle, &gname);

344 112 | return;

345 | }

346 |

347 |

348 Y Aeleleakeabobabataialala xKK KRKRKKRRKRKKIK ARKKXKKKKKKRKKKKRK [

349 | frxxxxxxxxxx Receive the Clear Request Response packet — *#x#xxxx/

350 | JERERERRIRRRKEAKRKKKIR falelaiakataatala flalakakatatalaa *x% [

351 |

352 (VAT EEEEE Set a timer to receive a message --------- *x

353 113 | expctid = OxFOF3;

354 114 | settimer(&expctid, "Rv Clr Rqt", &dataq, &gname, commhandle);

355 115 | if (expctid != OXFOF3)

356 |

357 116 | disablelink (&disable, commhandle, &gname);

358 117 | return;

359 | }

360 |

361 |

362 | fRxxExxkxxxx 0311 QOLRECY to Receive the Clear Response *xxxxxkx/

363 | /**** Get pointers to the user spaces. **xxxx/

364 118 | QUSPTRUS (&inbuff, &buffer);

365 119 | QUSPTRUS (&indesc, &descriptor);

366 |

367 | QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\

368 | &(recv.pcep), &(recv.operation), &(recv.numdtaunits),\

369 120 | &(recv.dataavail), &(recv.errorspecific), commhandie);

370 |

371 121 | if ((recv.retcode != 8) || (recv.reason != 0))

372 |

373 122 | printf("Recv clear response failed\n");

374 123 | printf("return code %d\n", recv.retcode);

Figure 4-1 (Part 15 of 26). C/400 Compiler Listing for the Source Application

4-18 As/400 System Programmer’s Communications Interface Guide

SEQNBR

2000
2001
2002

2003
2004

Page
INCNO

32

5738CX1 V2RIMO 910329 IBM SAA C/400 UDCS_APPLS /SOURCE $1616897 12/19/90 68:51:20 Page 33
Line STMT SEQNBR INCNO
T O B L S O B T O e PR SN : JUPE R SO O S T : PN
375 124 | printf("reason code %d\n", recv.reason); | 2054
376 125 | printespec(&(send.errorspecific)); | 2855
377 | | 2056
378 126 | disablelink (&disable, commhandle, &gname); | 2057
379 127 | return; | 2058
380 | } | 2859
381 | | 2060
382 | /* Interpret the Received Operation */ | 2061
383 128 | if (recv.operation != 8xB101) | 2062
384 | | 2063
385 129 | printf("Recvd opr %x instead of opr B181\n", recv.operation); | 2064
386 130 | disablelink (&disable, commhandle, &gname); | 2865
387 131 | return; | 2066
388 | | 2067
389 | | 2068
390 |/ *k falalaiaialaaiatal st KRKRKKKKKKKKK [| 2069
391 | /*** Disable the Tink and end the program **xx/ | 2070
392 I /****‘k*’k*’k****************‘k*****’(******‘k********/ | 2071
393 132 | disablelink (&disable, commhandle, &qname); | 2072
394 | | 2073
395 133 | printf("xx***x SSNDTH completed successfully **x¥xxx\p\p"); | 2874
396 | | 2075
397 1} /* End Main */ | 2076
398 | | 2077
399 | | 2078
490 | frxnns KIKRXRKIRKERRRIHAR KRKARKAR, | | 2079
401 l/******‘k******* Start Subroutine Sect-i on **********************/ I 2980
402 [SRR RAR IR AR IR RS HATIHRIRRARRK KR KRR RRERRE HRKIHKRR J | 2081
403 | | 2082
404 1/ falalaiaa alalaias falalalaaate folale KRKIRKKKKKRRKK [| 2083
405 l/*.************** Send a Packet of Data KRKKKKRKKKXRKKRKAK [| 2084
14
406 | | 2085
407 |void senddata (sendparms *send, | 2086
408 | char *huffer, | 2087
409 | desc *descriptor, | 2088
410 | char *commhandle, | 2089
411 | char *Tine, | 2098
412 | int linesiz) | 2091
413 | | 2092
414 1{ | 2093
415 1| descriptor->length = linesiz; | 2094
416 2 | descriptor->more = 0; | 2095
417 3| descriptor->qualified = 8; | 2096
418 4 | descriptor->interrupt = 0; | 2097
419 5 | descriptor->dbit = 0; | 2098
420 6 | strncpy (buffer, line, linesiz); | 2099
421 | | 2100
422 | QOLSEND (&(send->retcode), &(send->reason), &(send->errorspecific),\ | 2101
423 | &(send->newpcep), &(send->ucep), &(send->pcep), \ | 2102
424 71 commhandle, &(send->operation), &(send->numdtaelmnts)); | 2103
425 | | 2104
426 |} /* End senddata Subroutine */ | 2185
427 | | 2106
428 | | 2107
Figure 4-1 (Part 16 of 26). C/400 Compiler Listing for the Source Application

Chapter 4. Application Programming Examples 4-19

5738CX1 V2RIM@ 910329 IBM SAA C/400 UDCS_APPLS /SOURCE $1016897 12/19/90 08:51:20 Page 34

Line STMT SEQNBR INCNO
P U P S I S I DY SO N - SR S TR O S R EL: TR RS SRR I
429 Wkl KAKAK KAAKK KRKKKKKKRKKKKKKK [| 2108
430 | [rxxkxrwxaxrk - Routine to fill X.25 Format 1 *xkkkkxxask/ | 2109
431 | 2110
432 Jvoid sndformatl (sendparms *send,] 2111
433 | char *buffer, | 2112
434 | char *rmtdte, | 2113
435 | char *commhandle, | 2114
436 | qlindparms *qlind) | 2115
437 | | 2116
438 { | 2117
439 | formatl *output = (formatl *) buffer; | 2118
449 | register int counter; | . 2119
441 | register querydata *qd; | 2128
442 | | 2121
443 1| qd = (querydata *)&(qlind->userbuffer); | 2122
444 2 | output->type = 2; /* SVC used */ | 2123
445 3 | output->Togchanid = 0x8; | 2124
446 4 | output->sendpacksize = qd->x25data.defsend; | 2125
447 5 | output->sendwindsize = gqd->x25data.windowsend; | 2126
448 6 | output->recvpacksize = gd->x25data.defrecv; | 2127
449 7 | output->recvwindsize = gd->x25data.windowrecv; | 2128
450 | | 2129
451 8 | output->dtelength = strlen(rmtdte); | 2130
452 9 | byte(output->dte, 16, rmtdte, strlien(rmtdte)); | 2131
453 10 | output->dbit = 9; | 2132
454 11 | output->cug = 0; | 2133
455 12 | output->cugid = 0; | 2134
456 13 | output->reverse = 0; | 2135
457 14 | output->fast = 0; | 2136
458 15 | output->faclength = 0; | 2137
459 16 | byte(output->facilities, 109, "", 0); | 2138
460 17 | output->calllength = 1; | 2139
461 18 | byte(output->callud, 128, "21", 2); /* Contains Remote PID */ | 2140
462 19 | output->misc??(0??) = 0; /* change to 06x80 for reset support */ | 2141
463 20 | output->misc??(1??) = 0; | 2142
464 21 | output->misc??(2??) = 0; | 2143
465 22 | output->misc??(3??) = 0; | 2144
466 23 | output->maxasmsize = 16383; | 2145
467 24 | output->autoflow = 32; | 2146
468 | | 2147
469 | | 2148
470 | QOLSEND (&(send->retcode), &(send->reason), &(send->errorspecific),\ | 2149
471 | &(send->newpcep), &(send->ucep), &(send->pcep),\ | 2158
472 25 | commhandle, &(send->operation), &(send->numdtaelmnts)); | 2151
473 | | 2152
474 |} /* End sndformatl Subroutine */ | 2153
475 | | 2154
476 | | 2155
477 |/t**-k***r***7:7:***t***********-k-k*********************-x**-k**)\-/ l 2156
478 | frEEFRARRREXR Routine to fill X.25 Format I1 *%xxskksaxx/ | 2157
479 | | 2158
480 Jvoid sndformat2 (sendparms *send, | 2159
481 | char *buffer, | 2160
482 | char *commhandle) | 2161

Figure 4-1 (Part 17 of 26). C/400 Compiler Listing for the Source Application

4-20 As/400 System Programmer’s Communications Interface Guide

5738CX1 V2RIM@ 918329 IBM SAA C/480 UDCS_APPLS/SOURCE $1016897 12/19/90 ©8:51:20 Page 35

Line STMT SEQNBR ~ INCNO
P O R Ty T e B TRy Sy e e R - L, Ny SO TS T RN < T
483 | : 8 | 2162
484 I{ | 2163
485 | format2 *output = (format2 *) buffer; | 2164
486 | | 2165
487 1| output->type = 1; | 2166
488 2 | output->cause = 'FF'; | 2167
489 3 | output->diagnostic = 'FF'; | 2168
490 4 | output->faclength = 9; | 2169
491 5 | byte(output->facilities, 109, "", 0); | 2178
492 6 | output->length = 0; | 2171
493 7 | byte(output->userdata, 128, "", 0); | 2172
494 | | 2173
495 | | 2174
496 | QOLSEND (&(send->retcode), &(send->reason), &(send->errorspecific),\ | 2175
497 | &(send->newpcep), &(send->ucep), &(send->pcep),\ | 2176
498 8 | commhandle, &(send->operation), &(send->numdtaelmnts)); | 2177
499 | | 2178
500 I} /* End sndformat2 Subroutine */ | 2179
501 | | 2180
502 | | 2181
5@3 I/*****'k*****‘k'k**'k***********‘k**'k*'k***'k**‘k'k***/ | 2182
504 | Whslaialaaiaiold Routine to disable Xtkxxkxxxxk/ | 2183
505 | | 2184
506 |void disablelink (disableparms *disable, | 2185
507 | char *commhandle, | 2186
508] usrspace *gname) | 2187
509 | | 2188
510 I{ | 2189
511 unsigned short expctid; | 2190
512 |gentry dataq; | 2191
513 | | 2192
514 1| disable->vary = 1; /* Hard coded to be varied off */ | 2193
515 | | 2194
516 | QOLDLINK (&(disable->retcode), &(disable->reason),\ | 2195
517 - 2| commhandle, &(disable->vary)); | 2196
518]] 2197
519 3| if ((disable->retcode != 0) && (disable->reason != 80)) | 2198
520 | | 2199
521 4 | printf ("Link %.108s did not disabled.\n", commhandle); | 2200
522 51 printf ("return code = %d\n", disable->retcode); | 2201
523 6 | printf ("reason code = %d\n\n", disable->reason); | 2202
524 I } | 2203
525 | | 2204
526 | Ll T Set a timer to receive disable complete msg ~------- **% [| 2205
527 7 | expctid = OxFOF1; | 2206
528 8 | settimer(&expctid, "Disable", &datag, gname, commhandle); | 2207
529 9 | if (expctid != OxFOF1) | 2208
539 | { | 2209
531 10 | printf("Disable link did not complete successfully"); | 2210
532 11 | return; | 2211
533 | | 2212
534 | | 2213
535 12 | printf ("%.10s Tink disabled \n", commhandle); | 2214
536 | ,I 2215

Figure 4-1 (Part 18 of 26). C/400 Compiler Listing for the Source Application

Chapter 4. Application Programming Examples 4-21

$1016897 12/19/90 98:51:20

5738CX1 V2RIMO 916329 IBM SAA C/400 UDCS_APPLS/SOURCE
Line STMT
L R T A F S TR TTL UL U PPUE SUPIY PUNIE SN
537 | /%% close the files **/
538 13 | fclose(fptr);
539 14 | fclose(screen);
540 |
541 |} -/* End disablelink Subroutine */
542 |
543 |
544 | frxHrxx KEKKRKRKRRRIRIRIREKKRRRKERKRIAKRRFTKEK
545 | /** Routine to convert string to Hexidecimal format . **xwxkx/
546 |
547 jvoid byte (char *dest,
548 | int dlength,
549 | char *source,
550 | int slength)
551 |
552 |
553 | register int counter;
554 | char holder??(22?);
555 |
556 1| for (counter=0;counter<dlength;counter++)
557 2| dest??(counter??)=0;
558 3 | for (counter=slength-1;counter>=0;counter--)
559 4 | if isxdigit(source??(counter??))
560 | {
561 5 | holder??(0??)=source??(counter??);
562 6 | holder??(12?)="'\0"
563 71 if (counter % 2 ==
564 8 | dest??(counter/2??) += (char) hextoint(holder)*16;
565 9 | else dest??(counter/2??) += (char) hextoint(holder);
566 |
567
568 |} /* End byte Subroutine */
569]
570 |
571 (W halebalaladaiata bttt b ettty KKK */
572 | /x* Routine to display the ErrorSpecific output falainiaia
573
574 |void printespec(espec *errorspecific)
575
576
577 | especout outparms;
578
579 1 | QXXFORMAT(screen, "ERRORSPEC ");
580 2 | sprintf(outparms.hwecode, "%.8X", errorspecific->hwecode);
581 | sprintf(outparms.timestamp, "%.8X%.8X", errorspecific->timestamphi,\
- 582 3] errorspecific->timestamplo);
583 4 | sprintf(outparms.elogid, "%.8X", errorspecific->elogid);
584 5] if (errorspecific->flags & 0x40)
585 6 | outparms.fail = 'Y';
586 7 | else outparms.fail = 'N';
587 8 | if (errorspecific->flags & 0x28)
588 9 | outparms.zerocodes = 'Y';
589 10 | else outparms.zerocodes = 'N';
590 11 | if (errorspecific->flags & 0x10)
Figure 4-1 (Part 19 of 26). C/400 Compiler Listing for the Source Application

4-22 AS/400 System Programmer’s Communications Interface Guide

SEQNBR

2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227

Page
INCNOD

36

8....+....

5738CX1 V2RIM@ 910329 IBM SAA C/400 UDCS_APPLS/SOURCE $1016897
Line STMT
T R R TERTY TN N St RN N TR L U L Y ST S
591 12 | outparms.gsysopr = 'Y';
592 13 | else outparms.gsysopr = 'N';
593 14 | sprintf(outparms.cause,"%.2X", errorspecific->cause);
594 15 | sprintf(outparms.diagnostic, "%.2X", errorspecific->diagnostic);
595 16 | sprintf(outparms.erroffset, "%.6d", errorspecific->erroroffset);
596 17 | fwrite(&outparms, 1, sizeof(especout), screen);
597 18 | fread("", @, 8, screen);
598 |
599 |} /* End printespec Subroutine */
600 |
601 I/*i"********** Set a timer and dequeue next entry **¥kx%/
16
602 |
603 Jvoid settimer (unsigned short *expctid,
604 | char *process,
605 | gentry *datag,
606 | usrspace *gname,
607 | char *commhandle)
608 |
609 I{
610 [timerparms timer;
611 |disableparms disable;
612 |int length;
613 |char key??(622);
614 |
615 1| timer.interval = 20000; /* Set timer for 20 seconds */
616 2 | timer.establishcount = 1;
617 3| timer.keylength = 6; /* No key value */
618 4 | strncpy(timer.keyvalue, "SOURCE", 6);
619 5| timer.operation = 1; /* Set a timer */
620 |
621 | QOLTIMER (&(timer.retcode), &(timer.reason), timer.handleout,\
622 | timer.handlein, (char *)gname, &(timer.operation),\
623 | &(timer.interval), &(timer.establishcount),\
624 6 | &(timer.keylength), timer.keyvalue, timer.userdata);
625 |
626 7 1 if ((timer.retcode != @) || (timer.reason != 0))
627 i {
628 8 | printf("%s timer failed while being set.\n", process);
629 9 | printf("Return code = %d\n", timer.retcode);
630 10 | printf("Reason code = %d\n\n", timer.reason);
631 |
632 |
633 | /**eemmaam Dequeue an entry —------- ** [
634 11 | strncpy(key, "SOURCE",6);
635 12 | length = 6;
636 13 | dequeue (length, key, datag, gname);
637 |
638 | /*** Cancel timer **x/
639 14 | if (datag->msgid != OxFOF4)
640 | {
641 15 | strncpy (timer.handlein, timer.handleout, 8);
642 16 | timer.operation = 2; /* Set one timer */
643 |
644 | QOLTIMER (&(timer.retcode), &(timer.reason), timer.handleout,\
Figure 4-1 (Part 20 of 26). C/400 Compiler Listing for the Source Application

12/19/98 ©8:51:20

Geveenann

SEQNBR

2270

Page 37
INCNO

Chapter 4. Application Programming Examples ~ 4-23

5738CX1 V2RIMB 918329 IBM SAA C/400 UDCS_APPLS/SOURCE $1016897 12/19/90 08:51:20
Line STMT SEQNBR
P S D T Se: SPL Y S DI T N TSR T Ry A L P R
645 | timer.handlein, (char *)qname, &(timer.operation),\ | 2324
646 | &(timer.interval), &(timer.establishcount),\ | 2325
647 . 17 | &(timer.keylength), timer.keyvalue, timer.userdata); | 2326
648 | | 2327
649 18 | if ((timer.retcode != 0) || (timer.reason != 0)) | 2328
650 | | 2329
651 19 | printf("%s timer failed while being canceled\n", process): | 2330
652 20 | printf("Return code = %d\n", timer.retcode); | 2331
653 21 | printf("Reason code = %d\n\n", timer.reason); | 2332
654 | | 2333
655 | } | 2334
656 | | 2335
657 22 | if (datag->msgid != *expctid) | 2336
658 | | 2337
659 | printf ("A %.4X message ID was received instead of %.4X\n",\ | 2338
660 23 | datag->msgid, *expctid); | 2339
661 24 | printf ("%s completion message was not received\n", process); | 2340
662 25 | *expctid = datag->msgid; | 2341
663 | } | 2342
664 | | 2343
665 |} /* End settimer Subroutine */ | 2344
666 | | 2345
667 | | 2346
668 |/ * KKK KhkhKhk kRKKKKKKK [| 2347
669 | /Axxxx%% Dequeues the Incoming Message and processes it **kxxx/ | 2348
670 | | 2349
671 |[void dequeue (int Tength, | 2350
672 | char *key, | 2351
673 | gentry *datag, | 2352
674 | usrspace *gname) | 2353
675 | | 2354
676 I | 2355
677 | char fldlen??(3??), | 2356
678 | waittime??(3??), | 2357
679 | keylen?2(2??), | 2358
680 | senderid??(227), | 2359
681 | *pointer, | 2360
682 | order??(2?2?); | 2361
683 | register int counter; | 2362
684 | | 2363
685 | | 2364
686 1] waittime??(0??) = 0; | 2365
687 2 | waittime??(1??) = 0; | 2366
688 3| waittime??(2??) = 9x1D; /* Hard code a delay of infinite */ | 2367
689 4 | keylen?2(0??) = 0; | 2368
690 5 | keylen??(1??) = Ox6F; /* Hard code a keylength of 6 */ | 2369
691 6 | senderid??(0??) = 0; | 2378
692 7 | senderid??(12?) = Ox0F; | 2371
693 8 | strncpy(order, "EQ", 2); | 2372
694 | | 2373
695 9 | fflush(stdin); | 2374
696 10 | pointer = (char *)datag; | 2375
697 11 | for (counter = 8; counter < 336; counter++) | 2376
698 12 | pointer??(counter??) = 0; | 2377
Figure 4-1 (Part 21 of 26). C/400 Compiler Listing for the Source Application

4-24 AS/400 System Programmer’s Communications Interface Guide

Page
INCNO

38

5738CX1 V2R1MG 916329 IBM SAA C/4@0 UDCS_APPLS/SOURCE $1016897 12/19/90 08:51:20
Line STMT SEQNBR
F N T O R R TR TS TS MUY U SETTY SRR 8 N
699 | | 2378
760 13 | strncpy (datag->type, " "7 | 2379
701 14 | while ((strncmp(datag->type, "*USRDFN", 7) = 8) || (fldlen == 8)) | 2380
762 | QRCVDTAQ(gname->name, gname->1ibrary, fldlen, dataq, waittime,\ | 2381
703 15 | order, keylen, key, senderid,""); | 2382
704 | | 2383
705 1} /* End dequeue Subroutine */ | 2384
706 | | 2385
707 | | 2386
708 | frxrRRR * * KRKKKKRRKK KRKRRKKK [| 2387
709 I/*-* x25Tind: Read a record into bhuf and return length **/ | 2388
17
710 | 2389
711 |void x251ind (qlindparms *qlind, char *1inename) | 2390
712 | 2391
713 |register int counter; | 2392
714 | | 2393
715 1 | for(counter=0;counter<256;counter++) | 2394
716 2 | qlind->userbuffer??(counter??)=0; | 2395
717 | | 2396
718 3| qlind->format = 0x01; | 2397
719 | QOLQLIND (&(qlind->retcode), &(qlind->reason), &(qlind->nbytes),\ | 2398
720 4 | glind->userbuffer, linename, &(qlind->format)); | 2399
721 | | 2400
722 I} /* End x257ind Subroutine */ | 2401
723 | | 2402
724 | | 2403
725 |/*******************‘K******************‘k**7\‘*************/ | 2464
726 |/** Getline: Read a record into line and return length **/ | 2405
727 | | 2406
728 lint getline (char *1ine, int max, FILE *fptr) | 2407
729 1{ | 2408
730 1 if (fgets(1ine, max, fptr) == NULL) | 2409
731 2| return 0; | 2410
732 | else | 2811
733 3 return strlen(line); | 2412
734 | | 2413
735 |} /* End getline Subroutine */ | 2414
736 | | 2415
737 | [rxxRR KRKIKKRKKKIIIIRRKIRKKKKKKRRKKKRIKKKRRKKKAK [| 2416
738 |/* Exception handler, so that a failure will not | 2417
739 | ki1l the program, and any associated data!! */ | 2418
18
740 | | 2419
741 |void handler (disableparms disable, usrspace *gname) | 2420
782 I{ | 2421
743 | sigdata_t *data; | 2422
744 | | 2423
745 1| disablelink(&disable, "*ALL ", gname); | 2424
746 2 | printf("The program received an excecption.\n"); | 2425
747 3 | printf("Disable Link was called & the program was terminated.\n\n"); | 2426
748 | | 2427
749 4 | ‘data=sigdata(); | 2428
750 5 | data->sigact->xhalt=0; | 2429
751 6 | data->sigact->xrtntosgnler=0; | 2430
752 7 | data->sigact->xresigprior=0; | 2431
Figure 4-1 (Part 22 of 26). C/400 Compiler Listing for the Source Application
5738CX1 V2RIME 910329 IBM SAA C/408 UDCS_APPLS /SOURCE 51016897 12/19/90 08:51:20
Line STMT SEQNBR
AT R IR TR S AL TETTY TORUT SO I TETTY FRPIL NN NN +o.08 [PN
753 8 | data->sigact->xresigouter=0; | 2432
754 | | 2433
755 |} /* End handler Subroutine */ | 2434

**xx*x END OF SOURCE *x*xx*xx

Figure 4-1 (Part 23 of 26). C/400 Compiler Listing for the Source Application

Page 39
INCNO

Page 40
INCNO

Chapter 4. Application Programming Examples 4-25

5738CX1 V2RIMB 918329 IBM SAA C/400 UDCS_APPLS/SOURCE $1016897 12/19/90 08:51:20 Page 41
Kk K K K K INCLUDES k Kk kK kK Kk

INCNO. Include Name Last change Actual Include Name
1 header 90/12/19 98:49:31 UDCS_APPLS/QCSRC/HEADER
2 typedefs 90/12/19 ©8:49:31 UDCS_APPLS/QCSRC/TYPEDEFS
3 stdio.h 908/11/12 17:24:55 QCC/H/STDIO
4 stddef.h 90/11/12 17:24:54 QCC/H/STDDEF
5 errno.h 99/11/12 17:24:49 QCC/H/ERRNO
6 signal.h 90/11/12 17:24:53 QCC/H/SIGNAL
7 ctype.h 90/11/12 17:24:49 QCC/H/CTYPE
8 stdarg.h 90/11/12 17:24:54 QCC/H/STDARG
9 stdlib.h 90/11/12 17:24:56 QCC/H/STDLIB
18 signal.h 90/11/12 17:24:53 QCC/H/SIGNAL
11 xxasio.h 98/11/12 17:24:57 QCC/H/XXASIO
12 xxcvt.h 90/11/12 17:24:58 QCC/H/XXCVT
13 string.h 99/11/12 17:24:56 QCC/H/STRING
14 ctype.h 99/11/12 17:24:49 QCC/H/CTYPE
15 hexconv 90/12/19 ©8:49:27 UDCS_APPLS/QCSRC/HEXCONY
16 stdio.h 99/11/12 17:24:55 QCC/H/STDIO

*x*x*x END OF INCLUDES **x=*x*xx

Figure 4-1 (Part 24 of 26). C/400 Compiler Listing for the Source Application

5738CX1 V2RIMO 910329 IBM SAA C/400 UDCS_APPLS/SOURCE 51016897 12/19/90 08:51:20 Page 42
**kxk* MESSAGE SUMMARY **x*xxx
Total Info(0-4) Warning(5-19) Error(20-29) Severe (30-39) Terminal {(40-99)
0 0 4] 0 0 0

*x*x*x*x END OF MESSAGE SUMMARY ***x=*xx

Figure 4-1 (Part 25 of 26). C/400 Compiler Listing for the Source Application

5738CX1 V2RIM@ 910329 IBM SAA C/400 UDCS_APPLS/SOURCE $1016897 12/19/90 08:51:20 Page 43
ROUTINE BLOCK NUMBER SCOPE TYPE
<MAIN> 2 LOCAL MAIN-PROGRAM
__sigdata 6 LOCAL PROCEDURE
__sgnl 12 LOCAL PROCEDURE
_ frdinit 49 LOCAL PROCEDURE
__getrec 50 LOCAL PROCEDURE
__putrec 51 LOCAL PROCEDURE
__frdexit 52 LOCAL PROCEDURE
_ fwrinit 53 LOCAL PROCEDURE
_ fwrexit 54 LOCAL PROCEDURE
QXXFORMAT 129 LOCAL PROCEDURE
__strlen 164 LOCAL PROCEDURE
__strncmp 168 LOCAL PROCEDURE
__strncpy 170 LOCAL PROCEDURE
inttohex 181 ENTRY PROCEDURE
hextoint 182 ENTRY PROCEDURE
senddata 196 ENTRY PROCEDURE
sndformatl 197 ENTRY PROCEDURE
sndformat2 198 ENTRY PROCEDURE
byte 200 ENTRY PROCEDURE
printespec 201 ENTRY PROCEDURE
settimer 202 ENTRY PROCEDURE
dequeue 203 ENTRY PROCEDURE
x251ind 204 ENTRY PROCEDURE
getline 205 ENTRY PROCEDURE
disablelink 206 ENTRY PROCEDURE
handler 207 ENTRY PROCEDURE
main 208 ENTRY PROCEDURE

Program SOURCE was created in library UDCS_APPLS.
x*x* END OF COMPILATION *x*=x=x

Figure 4-1 (Part 26 of 26). C/400 Compiler Listing for the Source Application

4-26 AS/400 System Programmer’s Communications Interface Guide

The block numbers and explanations below correspond to those in the source
application’s program listing.

Some general C structure declarations used by both the source and target
application programs.

Note: The example programs of this chapter were developed using a 5250
display station and keyboard where the left ([) and right (]) bracket charac-
ters are not supported. As a result of this, C language array declarations
used in the applications use the character sequence of "??(” to denote a left
bracket and "??)” to denote a right bracket.

You do not need to change C language applications containing array decla-
rations with the bracket characters in order to compile and run on the
AS/400.

C/400 compiler directives are used here to indicate that standard 0S/400
linkage conventions should be used when calling the user-defined commu-
nications support APIs.

=

C external function definitions for the user-defined communications support
APls. Note that all parameters are passed by reference.

More C structure declarations that are used when calling the user-defined
communications support APIs.

Function prototypes of the internal functions used in this program.

BE B

Call the C library routines fopen() and signal{) to open the source file and
set up a signal handler to process AS/400 exceptions, respectively. An
example of an exception would be accessing a data area with a NULL
pointer. If an exception situation is encountered, the handler() will be
called in order for the program to end.

Call the QOLQLIND API to retrieve local configuration information from the
AS/400 line description about that will be used for communications. Next,
call the QOLELINK API to enable the line description using the line name
and communications handle passed as input parameters to this program.

ﬂ Call the QOLTIMER API to time the completion of the enable link operation.
If the timer expires before the enable-complete entry is posted on the this
program’s data queue, then this program will end.

El cCall the QOLSEND API with a X’B000’ operation to establish a connection to
the target application program.

Monitor the source program’s data queue for the call confirmation. The
source program will be notified of the call confirmation by call the
QOLRECYV API and receiving a X’B001” operation in the program’s input
buffer.

This is the main send loop for the source program. The data from the
source file is placed one line at a time in the output buffer and then the
QOLSEND API is called to send one data unit of the file to System B. This
process repeats until the contents of the entire file have been transmitted to
the target application. ’

Call the QOLSEND API with a X’B100” operation to clear the peer con-
nection.

Chapter 4. Application Programming Examples ~ 4-27

The source program will check its data queue for a response to the clear

The following C functions illustrate the various user-defined communications

This procedure illustrates a call to the QOLDLINK API. Note the vary option

packet sent to the target system. Once the response is received, the
program will clean up, call the QOLDLINK API to disable the link previously
enabled, and end. '

support APis.

is set to vary off the associated AS/400 *USRDFN network device.

The settimer() calls the QOLTIMER API requesting timers for 20000 millisec-

onds, or twenty seconds. After setting a timer, the settimer() will call the
dequeue() to remove an entry from the program’s data queue.

The x25lind() illustrates calling the QOLQLIND API.
As mentioned in block [, the handler() will be called when OS/400 excep-

tion situation is encountered. This function performs final processing, calls
the QOLDLINK API, and ends the source application program.

Target Application on System B Listing
The target application waits for the source application to initiate the file transfer.
The following list identifies the actions of the target application:

Calls the QOLQLIND API to get local X.25 line information

Opens the local file

Calls the QOLELINK API to establish a link for communications

Calls the QOLSETF API to activate an X.25 protocol ID filter

Calls the QOLRECV API to receive the X'B201” operation (incoming call)

Calls the QOLSEND API with a X’B400" operation to accept the SVC con-
nection

Receives the file from the target system via X’0001” operations

Calls the QOLRECV API to receive the X’"B301” (connection failure notifica-
tion) :

Call the QOLSEND API with ‘B100" operation to locally close the SVC con-
nection

Calls the QOLDLINK API to disable the link

Calls the QOLTIMER API to manage the reception of data queue entries

4-28 As/400 System Programmer’s Communications’ Interface Guide

5738CX1 V2RIMO 918329

Program name
Library name
Source file
Library name
Source member name
Text Description
Compiler options

D

Language level options
Source margins:
Left margin
Right margin
Sequence columns:
Left Column
Right Column
Define name
Generation options :

Print file:
Library name :
Message flagging level
Compiler message:
Message 1imit :
Message limit severity
Replace program object
User profile
Authority
Target Release
INDEBUG options
Last change
Source description
Compiler

IBM SAA C/400

UDCS_APPLS /TARGET
**x*xxx PROLOG

$1016897

k Kk kK k Xk

12/19/90 89:01:25 Page
TARGET
UDCS_APPLS
QCSRC :
UDCS_APPLS
TARGET
arget Applicatoin Example N
*SOURCE *NOXREF *NOSHOWUSR *NOSHOWSYS
*NOPPONLY *NODEBUG *GEN *NOSECLVL

*NOEXPMAC
*LOGMSG

*NOSHOWSKP *NOAGR

*PRINT

80

*NOLIST

*NOANNO

QSYSPRT
*LIBL

*NOXREF *GEN *NOATR *NODUMP *NOOPTIMIZE *NOALWBND

]

*NOMAX

30

*YES

*USER

*LIBCRTAUT

*CURRENT

I don't know

90/12/19 ©8:49:37

Target Applicatoin Example
IBM SAA C/400 Compiler

Figure 4-2 (Part 1 of 19). C/400 Compiler Listing for the Target Application

Chapter 4. Application Programming Examples

4-29

5738CX1 V2R1MG 910329 IBM SAA C/400 UDCS_APPLS/TARGET
X kK K kK Kk S 0 U R c E * K kK X Kk
Line STMT

[SR DA R R EETTY. TIPS PP NP ; TP

1 I/ wrwRRRR e * wxrn /
2 | /** *% |
3 | /** Program Name: Target Application Program Example ** f
4 xx/
5 | /x* *x [
6 | /** Function: *% [
7 |/** This is the target application program example that uses **/
8 | /** X.25 services provided by the user-defined communications *%f
9 |/** support to receive a simple file from the source application **/
10 | /** program running on System A. This program performs the *xf
11 | /%% following: *% [
12 | /** 01. Open the target file named OUTFILE. *% [
13 | /** 02. Call QOLQLIND to obtain local line information. **% [
14 | /x> 83. Enable a link. *x f
15 | /** 84. Set a Filter on the enabled link. **
16 | /** 05. Receive a 'B181'X operation (incoming call). **%f
17 | /x* 06. Send a 'B40B'X operation (accept call). **
18 | /x* 07. Receive '8081'X operation(s) (incoming data) from *% [
19 | /%% the source application program and write it to the **/
20 | /% file opened in step 1). xx
21 Whalad 08. Receive a 'B301'X operation (clear call indication). **/
22 | /X 09. Send a 'B180'X operation to respond Tocally to the **/
23 | fx* clearing of the connection. *% f
24 | /** 10. Disable the link enabled in step 3). *%
25 | /** ** [
26 |/%* A data queue will be actively used to manage the operation **/
27 |/** of this program. Data queue support will be used to monitor **/
28 |/** for the completion of the enable and disable routines, as ** f
29 |/** well as timer expirations and incoming data. Timers are *x /
30 |/** used to ensure that there will never be an infinite wait on **/
31 |/** the data queue. If a timer expires, the link enahled will **/
32 |/** be disabled and the program will stop. ** [
33 | /** *% [
34 | /% *% [
35 | /** Inputs: ** f
36 | /** The program expects the following input parameters: x*%/
37 | /** Line Name: This is the name of the line description ** [
38 | /x* that will be used to call the QOLELINK API. **/
39 | /%% The Tine must be an X.25 1ine with at Teast **/
49 | /** one SVC of type *SVCBOTH or *SVCIN. *%
41 | /x* *% [
42 | /** CommHandle: This is the logical name that will be used **/
43 | /** to identify the link enabled. *k [
a4 | /** xk [
45 | /%% Remote DTE Address: The is the Local Network Address ** f
46 | /% of system A. *x [
47 | /* *k
48 | /** *%
49 | /** Qutputs: *% [
50 |/** Current status of the file transfer will he provided when **f
51 | /** running this program. If an error should occur, then a ** [
52 | /** message will be displayed indicating where the error occurred **/

$1016897 12/19/96 ©9:01:25

Figure 4-2 (Part 2 of 19). C/400 Compiler Listing for the Target Application

4-30 AS/400 System Programmer’s Communications Interface Guide

SEQNBR

©C NV B WN -

Page

INCND

2

Line

53
54
55

5738CX1 V2RIMO 918329 IBM SAA C/400 UDCS_APPLS/TARGET $1016897
R R B TRy -ZRRNL SUR: AT TRTUY ST S FURR S . R TTTTY JUNE SO : SN
| /** and the program will end. If the program completes **/
| /** successfully, a "successful completion™ message will be **f
| /** posted.) *k
l/** **/

STMT

[/ ARKKKAKKKRKKKK KAKKKKKKKKK 3 KKRKKK /

|
|#include "header"

|void senddata(sendparms *a, char *b, desc *c, char *d, char *e, int f);

|void sndformatl(sendparms *a,char *h, char *c, char *d, qlindparms *e);
|
|void sndformat2 (sendparms *a, char *b, char *c);

|void setfilters (hdrparms *a);

:void byte (char *a, int b, char *c, int d);

{vnid printespec (espec *a);

Ivoid settimer(unsigned short *a,char *h,gentry *c,usrspace *d,char *e);
Ivoid dequeue (int a, char *h, gentry *c, usrspace *d);

:void putdata (char *a, int b, FILE *c);

{void x251ind (qlindparms *a, char *b);

Evoid disablelink (disableparms *a, char *b, usrspace *c);

|void handler (disableparms a, usrspace *h);

|sigdata_t *sigdata(void);
|

|/AnnAAAnnAnAA KKKKK KKKKKKRKKKK KKKKKKK KRKKRKK KKK /

l/*************** Start Main program *****************r*/

Ilnnsn KRKKRKKKKRKKK KKKKKK KKKKKKKKK * KKKK L3y /

lmain (int argc, char *argv??(2?))

unsigned short expctid; /* Message ID that is expected */
char commhandl1e??(10??), /* Command Line Parameter */
/* Remote DTE Address */

I{

I/************ Variab]e Dec]arations *******************/
|

| usrspace inbuff, /* Input Data Buffer */

| indesc, /* Input Buffer Descriptor */
| outhuff, /* Output Data Buffer */

| outdesc, /* Output Buffer Descriptor */
| gname; /* Data Queue */

|

| int length, /* Data Queue key legth */
| inc, i, j; /* counters */

|

|

|

rmtdte??(1727),

Figure 4-2 (Part 3 of 19). C/400 Compiler Listing for the Target Application

12/19/96 09:01:25

SEQNBR

Page 3
INCNO

Chapter 4. Application Programming Examples 4-31

5738CX1 V2RIM® 918329 IBM SAA C/400

Line

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

STMT

17
18
19
20
21
22
23

|
|
|
|
:
[
|
|
|
I
[
I
|
I

|
|
|
|
I
|
I
|
|
|
|
:
|
I
|
|
[
|
|
|
|
|
|
|
|
|
I
|
|
|
!
I
|
|
|

UDCS_APPLS/TARGET

puffer, / Pointer to buffer */
key?7(2562?); /* Data Queue key identifier */
desc *descriptor; /* Pointer to buffer descriptor */

/** definitions for API functions **/

enableparms enahle;
disableparms disable;
sendparms send;
recvparms recv;
setfparms setf;
timerparms timer;
glindparms qlind;
gentry dataq;
hdrparms *header;

!‘****** Annndddddd.... there offll *xxkxkaxdnx/

/***%..- QOpen the file to put the received data. a4
if ((fptr = fopen("UDCS_APPLS/OUTFILE)", "w")) == NULL)

printf("Unable to open target output file in UDCS_APPLS LIB.\n");
printf("The Program was terminated.\n\n");
return;

/***-_- Open the display file for error handling. ----**/
if ((screen = fopen("ERRORSPEC", "ah+ type = record")) == NULL)

printf("Unable to open display file.\n");
printf("The Program was terminated.\n\n");
return;

)

[***-.- Set the Execption Handler ———akkf
signal (SIGABRT,&handler);

/** Clear the command 1ine parameters **/

strncpy (enable.linename, " ", 10); /* Clear linename */
strncpy (commhandle, " v, 10); /* Clear Commhandle */
strncpy (rmtdte, v, 17); /* Clear Remote DTE */

/** Receive command line Paramters **/
strncpy(enable.linename, argv??(1??), strlen(argv??(1??)));
strncpy (commhandle, argv??(2??), strien(argv??(2??)));
strncpy (rmtdte, argv??(3??), strlen(argv??(3??)));
rmtdte?? (strlen(argv??(3??2))??) = '\0';

/** Initialize the user spaces **/

strncpy (inbuff.library, "UDCS_APPLS", 18); /* Input Buffer */
strncpy (inbuff.name, "TARGETIBUF", 18);

strncpy (indesc.library, "UDCS_APPLS", 18); /* Input B Desc */
strncpy (indesc.name, “TARGETIDSC", 18);

strncpy (outbuff.library, "UDCS_APPLS", 18); /* Output Buffer*/
strncpy (outbuff.name, "TARGETOBUF", 10);

strncpy (outdesc.library, "UDCS_APPLS", 18); /* Output B Desc */

$1016897 12/19/90 89:01:25

Figure 4-2 (Part 4 of 19). C/400 Compiler Listing for the Target Application

4-32 AS/400 System Programmer’s Communications Interface Guide

SEQNBR

107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

Page
INCNO

4

5738CX1 V2RIMO 918329

Line

161
162
163
164
165
166
167
168
169
170
171
172

173.

174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

196
197
198
199
200
201
202
203
204
205
206
287
208
209

210
211
212
213

214

STMT
24

25
26

27

33
34
35

36

37

38

39

41

47
48
49
50

AT PO N

strncpy (ou

IBM SAA C/400

tdesc.name, "TARGETODSC", 10);

[I A TR TTE: ST RN DN

strncpy (qname.library, "UDCS_APPLS", 18);
strncpy (gname.name, "X25DTAQ ", 18);

[***%*%x petrieve the line description information ****xxx/

x251ind (&qlind, enable.linename);

LN

/*

UDCS_APPLS/TARGET

Data queue

if ((gqlind.retcode != 0) || (gqlind.reason != 9))

printf(
printf(
return;

"Return code = %d\n", glind.retcode);

"Reason code

%d\n\n", gqlind.reason);

[****%x Hard Code the QOLELINK Input Parameters **xxxx/

enable.max

enable.key

.strncpy(en
2

printf(
return;

expctid =

dtax25 = 512;
Tength = 3;
able.keyvalue, "RCV", 3);

Enable the 1ink -----ccaema

enable.linename, commhandle);

|
|
|
|
|
|
|
|
|
| printf("Query line description failed.\n");
|
|
|
|
|
|
|
|
|

QOLELINK (&(enable.retcode), &(enable.reason), &(enable.tdusize),\
&(enable.numunits), &(enable.maxdtalan), &(enable.maxdtax25),\
(char *)&inbuff, (char *)&indesc, {char *)&outbuff,\
(char *)&outdesc, &(enable.keylength), enable.keyvalue,\
(char *)&gname, enable.linename, commhandle);

if ((enable.retcode != 8) || (enable.reason != 8))
{
printf("Line %.10s with Commhandle %.10s was NOT ENABLED.\n",\

printf("Return code = %d\n", enable.retcode);

"Reason code = %d\n\n", enable.reason);

Set a timer for Enable link
OxFOF0;

settimer(&expctid, "Enable", &dataq, &gname, commhandle);

if (expcti

return;

/******‘k********************'k*’k***********'k*****‘k********‘k****/

/******* -

I ('k**************‘k*‘k*‘k**‘k********************‘k'k‘k*************'A‘*/

|

| QUSPTRUS(&outbuff, &header); /* get the output buffer pointer */
| header->function = 1; /* add a filter
|
|

d != OxFOFQ)

-- Set a Filter for the Link

|

|

|

|

|

I {
| disablelink (&disable, commhandle, &gname);
|

|

|

|

|

|

AKKKKKKKK

*/
header->type = 8; /* X.25 PID only */
header->number = 1; /* set 1 filter */

$1016897 12/19/96 69:61:25 Page

5

SEQNBR INCNO

161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

)

—
oo
~

206
207
208
209

n
|3
N

210
211

213
214

Figure 4-2 (Part 5 of 19). C/400 Compiler Listing for the Target Application

Chapter 4. Application Programming Examples

4-33

5738CX1 V2RIMO 9108329 IBM SAA C/400

Line

215
216
217
218
219
220

291
et

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

STMT

52

64
65

66

L D T O R e CE LTS TRTRT PN R

UDCS_APPLS/TARGET

header->Tength = 16;
setfilters(header);

/* X.25 filter length */
/*- Fill in the filter format */

rkxkxF*-—-o Set the filter for the Link -------- KREKKKKAK |
QOLSETF (&(setf.retcode), &(setf.reason), &(setf.erroffset),\
commhandle);

printf("Set Filters Return Code = %.2d\n", setf.retcode);
printf("Set Filters Reason Codes = %.4d\n", setf.reason);
printf("Set Filters Error Offset = %.4d\n", setf.erroffset);
return;

)

hAKKKRKAKK KKKKKKKK

/
J**** Receive the incoming call packet and accpet the call **/

/ KKKk *AK KKKKKKKK n/

JEE e Set a timer to receive data -------- ** [
expctid = OxFOF3;

settimer(&expctid, "Inc Call ", &dataq, &gname, commhandle);
if (expctid != OXFOF3)

disablelink (&disable, commhandle, &qname);
return;

[rxxxxxxxxk Receive the Incoming Data KEKRKKRKKK
QUSPTRUS (&inbuff, &buffer);
QUSPTRUS (&indesc, &descriptor);

QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\
&(recv.pcep), &(recv.operation), &(recv.numdtaunits),\
&(recv.dataavail), &(recv.errorspecific), commhandle);

if ((recv.retcode != 8) || (recv.reason != 0))

printf("Recv incoming call packet failed\n");
printf("return code %d\n", recv.retcode);
printf("reason code %d\n", recv.reason);
printespec(&(send.errorspecific));

disablelink (&disable, commhandle, &gname);
return;

)

/*** Interpret the Received Operation ***/
if (recv.operation != 0xB201)

printf("Recvd operation %x instead of B201", recv.operation);
disablelink (&disable, commhandle, &gname);
return; J**** End the program ***/

)

51016897

Figure 4-2 (Part 6 of 19). C/400 Compiler Listing for the Target Application

4-34 AS/400 System Programmer’s Communications Interface Guide

12/19/90 09:01:25

SEQNBR

215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

264
265
266

268

Page
INCNO

6

5738CX1 V2RIMG 918329

Line STMT

269

270
271
272
273
274
275

302
303
304
365
306
307
308 94
309 95
310 96
311
312 97
313 98
314
315
316
317
318 99
319 100
320
321
322

|
[
i
|
I
[
|
|
}
|
|
|
|
|
:
:
I

IBM SAA C/400 UDCS_APPLS/TARGET

L RN D T T O SR I SRR ST Y- P JOU T S S T

nnna/

/** Send a response to accept the call and establish a connection **/

KARAKRKKKKK * /

[** *K * * KKKRK Kk hkhk

/* KKK * * KAKKKRRKKKKKK *

J**** Get pointers to the user spaces. *¥*xxx/

QUSPTRUS (&outhuff, &buffer);

QUSPTRUS (&outdesc, &descriptor);

/******* Set up Send packet *********/

send.ucep = 62; /* set UCEP to be 62 */

send.pcep = recv.pcep; /* get the PCEP number */
send.operation = 0xB400; /* send a call request response */
send.numdtaelmnts = 1; /* send one data unit */

VAl EEEE Send the packet ~--mmmmmmmmeaoo *x

sndformatl (&send, buffer, rmtdte, commhandle, &qglind);

if ((send.retcode != @) || (send.reason != 9))
{
printf("Data NOT sent for commhandle %.9s\n", commhandle);
printf("Return code = %d\n", send.retcode);
printf("Reason code = %d\n", send.reason);
printf("new pcep %d\n\n", send.newpcep);
printespec(&(send.errorspecific));

disablelink (&disable, commhandle, &gname);
return;

printf("An X.25 SVC connection was completed\n\n");

/**/

/***f

Receive Incoming Data
/**/

Set a timer to receive data
expctid = OXFOF3;
settimer(&expctid, "Inc Data ", &datag, &gname, commhandle);
if (expctid != BXFOF3)

{

disablelink (&disable, commhandle, &gname);
return;

)

[x**xxkxkk___ Receive the Incoming Data
/** Get pointer to user space **/
QUSPTRUS (&inbuff, &buffer);

QUSPTRUS (&indesc, &descriptor);

____******/

/** Receive the data **/
QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\

Figure 4-2 (Part 7 of 19). C/400 Compiler Listing for the Target Application

Chapter 4. Application Programming Examples

$1016897

8... 4.,

12/19/90 ©9:981:25
SEQNBR
Gevvnnnnn
| 269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301

302
303
304

w
—
N

Page 7
INCNO

4-35

5738CX1 V2RIMO 916329 IBM SAA C/400

Line

323
324
325
326
327
328
329
330
331
332
333
334
335
336

358
359
360
361
. 362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

STMT

101

102

103

1084
1085
106

187
108

109
110

111

112

113
114

115

116
117
118

119
120

121
122

123

|
!
|
I
|
|
|
I
I
|
|
|
I

I
|
|
|
|
|
|
[
|
I
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
!
|
|
|
|
|
I
|

*-

UDCS_APPLS/TARGET

&(recv.pcep), &(recv.operation), &(recv.numdtaunits),\
&(recv.dataavail), &(recv.errorspecific), commhandle);

if ((recv.retcode != 0) || (recv.reason != @))

printf("Recv op for first data unit failed\n");
printf("return code %d\n", recv.retcode);
printf("reason code %d\n", recv.reason);
printespec (&(send.errorspecific));

disablelink (&disable, commhandle, &gqname);
return;

}

/*****************************k*t*******************k************/

Jr*xrxxx Start a loop to read in all the incoming data L)
/*****************x****r*****r**********************x********x***/

i

=1;

while (recv.operation == 0x0001)

printf("%d Data Recvd {%.4x}.\n\n", i++, recv.operation);

/** Store all the data units in the file **/
for (j = 1; j <= recv.numdtaunits; j++) {
putdata (buffer + (j - 1)*enable.tdusize,\
descriptor->length, fptr);
descriptor = (desc *)((char *)descriptor + sizeof(desc));
}/* for ¥/

[EK e Set a timer to wait for more data ------- *k [
if (recv.dataavail == @)

/** Set timer **/

expctid = OxFOF3;

settimer(&expctid, "Wt Inc Dta", &dataq, &gname, commhandle);
if (expctid != OXFOF3)

disablelink (&disable, commhandle, &gname);
return;

)

/** Get pointer to user space **/
QUSPTRUS (&inbuff, &buffer);
QUSPTRUS (&indesc, &descriptor);

/** Receive the data **/

QOLRECV (&(recv.retcode), &(recv.reason), &(recv.ucep),\
&(recv.pcep), &(recv.operation), &(recv.numdtaunits),\
&(recv.dataavail), &(recv.errorspecific), commhandle);

} /** End Receive data while loop **x*xx/

$1016897

Figure 4-2 (Part 8 of 19). C/400 Compiler Listing for the Target Application

4-36 AS/400 System Programmer’s Communications Interface Guide

12/19/90 ©9:01:25

B B TRy S S R R - TN R R TRTRY SRR PRRIE: N N R SR

SEQNBR

323
324
325
326
327
328
329
330
331
332
333
334
335
336

Page
INCNO

8

5738CX1 V2RIMO 910329 IBM SAA C/408 UDCS_APPLS/TARGET $1016897 12/19/90 089:01:25 Page 9
Line STMT SEQNBR INCNO
}i.+....1....+....2....+....3....+....4....+....5....+ LT S R P T
379 | | 379
389 I *******************************‘K**********‘k*********/ | 380
381 | frrxxxxxxxxx Receive the Clear indication xxwxkxkkakx/ | 381
382 I /**************‘k********************'k**********‘K*****/ I 382
383 | . | 383
384 124 | if ((recv.retcode != 83) || (recv.reason != 40082)) | 384
385 | { | 385
386 125 | printf("Recv opr for clear request failed\n"); | 386
387 126 | printf("return code %d\n", recv.retcode); | 387
388 127 | printf("reason code %d\n", recv.reason); | 388
389 128 | printespec(&(send.errorspecific)); | 389
390 | | 390
391 129 | disablelink (&disable, commhandle, &gname); | 391
392 130 | return; | 392
393 | } | 393
394 | | 394
395 | /* Interpret the Received Operation */ | 395
396 131 | 1if (recv.operation != 0xB301) | 396
397 | | 397
398 132 | printf("Recvd operation %x instead of B301", recv.operation); | 398
399 133 | disablelink (&disable, commhandle, &gname); | 399
400 134 | return; [****% end the program ***/ | 400
201 | } | 401
402 | | 402
483 | | 403
404 | froenn * KRRRRRRRRIRRRERIIRRERRRIRRRRERRRRRIHRRKRRRRIRK | | 404
405 | [rxxxxxxxxxx Send local response to clear indication *rxxwxxxsxx/ | 405
406 | /x* *k * Kk KRKKKKRRKKRKKRRKKKIKKIRKR [| 406
407 | | - 407
408 | /**** Get pointers to the user spaces. **xxkx/ | 408
409 135 | QUSPTRUS(&outbuff, &buffer); | 409
410 136 | QUSPTRUS(&outdesc, &descriptor); | 410
411 | | 411
412 | /-kt#k*** Set up the packet ****************/ | 412
413 137 | send.operation = 9xB100; /* send a clear request packet */ | 413
414 138 | send.numdtaelmnts = 1; /* send one data unit */ | 414
415 | | 415
416 | [*Femmae Send the packet — ~-----ecoceeoooo Lid) | 416
417 139 | sndformat2 (&send, buffer, commhandle); | 417
418 | | 418
419 140 | if ((send.retcode != @) && (send.reason != 0)) | 419
420 | | 420
421 141 | printf("Response not sent for clear connection\n"); | 421
422 142 | printf("Return code = %d\n", send.retcode); | 422
423 143 | printf("Reason code = %d\n", send.reason); | 423
424 144 | printf("new pcep %d\n\n", send.newpcep); | 424
425 145 | printespec(&(send.errorspecific));] 425
426 | | 426
427 146 | disablelink (&disable, commhandle, &gname); | 427
428 147 | return; | 428
429 | | 429
430 | | 430
431 | | 431
632 | /********'k*****‘k******'k*‘k***’k***‘k***‘k****‘k*************/ I 432
Figure 4-2 (Part 9 of 19). C/400 Compiler Listing for the Target Application
Chapter 4. Application Programming Examples 4-37

5738CX1 V2RIMO 910329 IBM SAA C/480 UDCS_APPLS/TARGET
Line STMT
P LY S . B EEEEL TRTRL NN PR PR
433 [rrxxxxkxkxk Receive the Clear Confirmation ki /
434 / s foisialalailafutalbataiaale AFRK |
435
436 JEH e Set a timer to receive data -------- % f
437 148 expctid = BxFOF3;
438 149 settimer(&expctid, "Clr Cnfrm", &dataq, &gname, commhandle);
439 150 if (expctid != OxFOF3)
440
441 151 disablelink (&disable, commhandle, &gname);
442 152 return;
443 }
444
445 153 if ((recv.retcode != 00) || (recv.reason != 0008))
446
447 154 printf("Recv failed for clear confirmation\n");

449 156 printf("reason code %d\n", recv.reason);
459 157 printespec(&(send.errorspecific));
451
452 158
453 159
454
455
456
457 160
458
459 161
460 162
461 163
462

disablelink (&disable, commhandle, &gname);
return;

/* Interpret the Received Operation */
if (recv.operation != 9xB101)

printf("Recvd opr %x instead of opr B301\n", recv.operation);
disablelink (&disable, commhandle, &gname);
return;

|
|
|
|
|
|
|
I
f
|
|
|
|
|
|
448 155 | printf("return code %d\n", recv.retcode);
I
I
|
|
|
|
|
|
|
|
|
|
|
| }

[HRERKRRKKKKKKKKKR * KAKK KKK na/

/** disable the link and end program **/

/* * KKKKK KRKKKKKKKKKKRKKKKKKK

468 164 disablelink (&disable, commhandle, &gname);

471 165 printf("TARGET application completed OK!\n\n");

} /* End Main */

* * KKKKK * * KKKKKKK * /

/
/********‘k***** Start Suhr\outine Secti on ‘k*****************’k***/
/

KAKKKKKKK KRKKKKKKK Kk KEAAKKKKRK KAKK KK /

/*********‘k*********‘k**'k*'k*************************'A‘***‘k**********/
Jrrmerereres Routine to fi11 X.25 Format 1 %ovexaxxsnss /

void sndformatl (sendparms *send,
char *buffer,
char *rmtdte,

E
~
(3]

$1016897

Figure 4-2 (Part 10 of 19). C/400 Compiler Listing for the Target Application

4-38 AS/400 System Programmer’s Communications Interface Guide

12/19/90 ©9:01:25

SEQNBR

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
459
451
452
453
454
455
456
457
458
459
460
461
462

Page
INCNO

18

5738CX1 V2RIMG 918329 IBM SAA C/4p0

Line

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

STMT

25

1
2

O I Ry LR . R O B e F R Y N LR AT

char *commhandle,
glindparms *qlind)

formatl *output = (formatl *) buffer;
register int counter;
register querydata *qd;

gd = (querydata *)&(qlind->userbuffer);
output->type = 0; /* not used */
output->Togchanid = 0x0;

output->sendpacksize = gd->x25data.defsend;
output->sendwindsize = gqd->x25data.windowsend;
output->recvpacksize = qd->x25data.defrecv;
output->recvwindsize = qd->x25data.windowrecv;

output->dtelength = strlen(rmtdte);
byte(output->dte, 16, rmtdte, strlen(rmtdte));
output->dbit = 0;

output->cug = 9;

output->cugid = 9;

output->reverse = 9;

output->fast = 0;

output->faclength = 0;
byte(output->facilities, 109, "", 8);
output->calllength = 0;
byte(output->callud, 128, "00", 2);

output->misc??(0??) = 0;

= 0;
output->misc??(22?) = 6;
output->misc??(3??) = 6;

output->maxasmsize = 16383;
output->autoflow = 32;

QOLSEND (&(send->retcode), &(send->reason), &(send->errorspecific),\

UDCS_APPLS/TARGET

not
not

not
not
not
not

&(send->newpcep), &(send->ucep), &(send->pcep),\

commhandie, &(send->operation), &(send->numdtaeimnts));

} /* End sndformatl Subroutine */

used
used

used
used
used
used

* KERKKKKKKRKKRKKKKKKKRKKAKRKKA KkK

/
[rexxxxxxkxxx Routine to fill X.25 Format 1 *xwxssxxsssx /

void sndformat2 (sendparms *send,
char *huffer,
char *commhandle)

{
format2 *output = (format2 *) buffer;

output->type = 1;
output->cause = 'FF';

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
| output->misc??(1?2?)
|
|
|
|
|
|
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

$1016897

+o..

Figure 4-2 (Part 11 of 19). C/400 Compiler Listing for the Target Application

.8.

12/19/96 ©9:81:25

eeeteieiOiiiiane,

SEQNBR

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

535
536
537
538
539
540

Page 11
INCNO

Chapter 4. Application Programming Examples 4-39

5738CX1 V2RIM® 910329 IBM SAA C/400

Line STMT

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

NoO»m s W

ONOUTE WN

3

4

UDCS_APPLS/TARGET

SR R IR - NG TR SR SURI SIS PORRL
output->diagnostic = 'FF';
output->faclength = 6;
byte(output->facilities, 109, "", 0);
output->length = 8;
byte(output->userdata, 128, "", 0);

QOLSEND (&(send->retcode), &(send->reason), &(send->errorspecific),\
&(send->newpcep), &(send->ucep), &(send->pcep),\
commhandle, &(send->operation), &(send->numdtaelmnts));

} /* End sndformat2 Subroutine */

KK KKK KKKKKRKKARKRARKKK *k n/

/
/************** Fi}] in the Buffer for the Fi]ter ****************/

void setfilters (hdrparms *header)

{

x25filter *filters;

|

|

|

|

|

|

|

|

|

|

|

|

|

I

|

|

|

|

|

|

|

| filters = (x25filter *)header->filters;

| filters?2(0??).pidlength = 1;

| filters??2(0?2?).pid = 0x21; /* set the protocal ID */
| filters??(0??).dtelength = 0; /* no DTE used in filter */
| byte(filters??(02?).dte, 12, "", 8);

| filters??2(0??).flags = 0x0;

| filters??(07?).flags += 0x80; /* Set Reverse Charging to no */
| filters?2(0??).flags += 0x40; /* Set Fast Select to no */

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

} /* End setfilters Subroutine */

/*************r******************************/
JRRRKKIRK Routine to disable KRRKKKKRAKK |

void disablelink (disableparms *disahle,
char *commhandle,
usrspace *gname)

{
gentry dataq;
unsigned short expctid;

disable->vary = 1; /* Hard code device to vary off */

/** Call disable link **/

QOLDLINK (&(disable->retcode), &(disable->reason),\
commhandle, &(disable->vary));

if ((disable->retcode != 0) && (disable->reason != 80))

printf ("Link %.10s did not disabled.\n", commhandle);

51016897 12/19/90 09:01:25

4-2 (Part 12 of 19). C/400 Compiler Listing for the Target Application

4-40 As/400 System Programmer’s Communications Interface Guide

SEQNBR

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

Page
INCNO

12

5738CX1 V2RIMO 918329 IBM SAA C/400

Line STMT

595
596
597
598
599
600
601
662
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

632

5
6

13
14

/W=

N Wwm

UDCS_APPLS /TARGET

printf ("return code = %d\n", disable->retcode);
printf ("reason code = %d\n\n", disable->reason);
}

else
printf ("%.10s link disabled \n", commhandle);

[FH e Set a timer to receive message -------- **f
expctid = OxFOF1;

settimer(&expctid, "Disable ", &dataq, gname, commhandle);
if (expctid i= OxFOF1)

printf("Disable 1ink did not complete successfully");
return;

}
/** close the files **/
fclose(fptr);
fclose(screen);

} /* End disablelink Subroutine */

* KAKKAKKK * KKKKKKKK AKKKK * *K n/

/
[** Routine to convert string to Hexidecimal format ***xxx/

|

|

|

|

|

|

|

|

|

|

:

|

|

|

|

|

|

|

|

|

|

|

|

|

|void byte (char *dest,
| int dlength,
| char *source,
| int slength)
|
|
|
|
|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
|

{

register int counter;
char holder??(22?);

for (counter=0;counter<dlength;counter++)
dest??(counter??)=0;

for (counter=slength-1;counter>=0;counter--)
if isxdigit(source??(counter??))

holder??(02?)=source?? (counter??);
holder??(122)="\0";
if (counter % 2 == 0)

dest??(counter/22?) += (char) hextoint(holder)*16;
else dest??(counter/22?) += (char) hextoint(holder);

} /* End byte Subroutine */

/***********‘k‘k***********‘k****k‘k*******'k********************‘k**/
/x* Routine to display the ErrorSpecific output KRKKKRK [
/

KAKKAKKKARA KKKKKK * * KAKKKKKRRRKKKKKKK /

void printespec(espec *errorspecific)

51016897

Figure 4-2 (Part 13 of 19). C/400 Compiler Listing for the Target Application

12/19/98 ©9:01:25

SEQNBR

595
596
597
598
599
500
501
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629

631
632
633
634
635
636
637
638
639
640
641

643
644

646
647
648

Page 13
INCNO

Chapter 4. Application Programming Examples 4-41

Line

649
650
651
652
653
654

AREL
[kl

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681

STMT

O NS WN

5738CX1 V2RIMO 918329 IBM SAA C/400 UDCS_APPLS/TARGET $1016897 12/19/90 89:01:25
SEQNBR
Fa T P R J I R Pt B L EEL- TERTS PN I
| | 649
I{ | 650
| especout outparms; | 651
| | 652
| QXXFORMAT(screen, "ERRORSPEC "); | 653
| sprintf(outparms.hwecode, "%.8X", errorspecific->hwecode); | 654
| sprintf{outparms.timestamp, "%.8X%.8X", errorspecific->timestamphi,\ | 655
| errorspecific->timestamplo); | 656
| sprintf(outparms.elogid, "%.8X", errorspecific->elogid); | 657
| if (errorspecific->flags & 0x48) | 658
[outparms.fail = 'Y'; | 659
| else outparms.fail = 'N'; | 660
| if (errorspecific->flags & 0x20) | 661
| outparms.zerocodes = 'Y'; | 662
| else outparms.zerocodes = 'N'; | 663
| if (errorspecific->flags & 0x18) | 664
| outparms.gsysopr = 'Y'; | 665
| else outparms.gqsysopr = 'N'; | 666
| sprintf(outparms.cause,"%.2X", errorspecific->cause); | 667
| sprintf(outparms.diagnostic, "%.2X", errorspecific->diagnostic); | 668
| sprintf(outparms.erroffset, "%.6d", errorspecific->erroroffset); | 669
| fwrite(&outparms, 1, sizeof(especout), screen); | 670
| fread("", 8, 0, screen); | 671
| | 672
|} /* End printespec Subroutine */ | 673
| | 674
| | 675
I /***********************‘k************‘k**************************/ I 676
| /x***x*xxx Dequeues the Incoming Message and processes it *xkxxx/ | 677
| | 678
|void dequeue (int length, | 679
| char *key, | 680
| gentry *datagq, | 681
| usrspace *gname) | 682
| | 683
I | 684
| char fldlen2?(3?7), | 685
| waittime??(32?), I 686
| keylen??(22?), | 687
| senderid??(22?), | 688
| *pointer, | 689
| order??(22?); | 690
| register int counter; | 691
| | 692
| | 693
| waittime??(02?) = 0; | 694
| waittime??2(122) = @; | 695
| waittime??(2??) = 0x1D; /* Hard code a delay of infinite */ | 696
| keylen?2(8??) = ©; | 697
| keylen??(1??) = Ox6F; /* Hard code a keylength of 6 */ | 698
| senderid??(0??) = 0; | 699
| senderid??(1??) = OxOF; | 700
| strncpy(order, "EQ", 2); | 701
| | 702

4-2 (Part 14 of 19). C/400 Compiler Listing for the Target Application

4-42 As/400 System Programmer’s Communications Interface Guide

Page
INCNO

14

5738CX1 V2RIM@ 918329 IBM SAA C/400 UDCS_APPLS/TARGET $1016897 12/19/908 ©9:01:25
Line STMT SEQNBR
PO SO DR S SO SRDI: SRR SO SRR TR S S S CE LT AT TR I TRS - PRPRL PR [* IR
703 | /* C]ear the data structures **/ | 703
704 9 | fflush(stdin); | 704
705 10 | pointer = (char *)dataq; | 705
706 11 | for (counter = 8; counter < 336; counter++) | 706
707 12 | pointer??(counter??) = | 707
708 | | 708
769 13 | strncpy (datag->type, " v7); | 789
718 14 | while ((strncmp(datag->type, "*USRDFN", 7) != 8) || (fldlen == 8)) | 710
711 | QRCYDTAQ(qname->name, gname->1ibrary, fldlen, datag, waittime,\ | 711
712 15 | order, keylen, key, senderid,""); | 712
713 | | 713
714 I} /* End dequeue Subroutine */ | 714
715 | | 715
716 | | 716
717 | FRXKKAKRKAKK XK [b7y
718 | [rxxkxrxrkxxrk Set a timer and dequeue next entry ArEERK/ | 718
719 | : | 719
720 |void settimer (unsigned short *expctid, | 720
721 | char *process, | 721
722 | gentry *datagq, | 722
723 | usrspace *gname, | 723
724 | char *commhandle) | 724
725 | | 725
726 I{ | 726
727 |timerparms timer; | 727
728 |disableparms disable; | 728
729 lint length; | 729
730 |char key??(627?); | 730
731 | | 731
732 1| timer.interval = 20000; /* set timer for 20 seconds */ | 732
733 2 | timer.establishcount = 1; /* set establish count to 1 */ | 733
734 3| timer.keylength = 6; /* key value */ | 734
735 4 | strncpy(timer.keyvalue, "TARGET", 6); /* set key value / | 735
736 5 | timer.operation = 1; /* set a timer */ | 736
737 | | 737
738 | /* Call QOLTIMER */ | 738
739 | QOLTIMER (&(timer.retcode), &(timer.reason), timer.handleout,\ | 739
748 | timer.handlein, {char *)gname, &{timer.operation),\ ! 748
741 | &(timer.interval), &(timer.establishcount),\ | 741
742 6 | &(timer.keylength), timer.keyvalue, timer.userdata); | 742
743 | | 743
744 7 | if ((timer.retcode != 0) || (timer.reason != 0)) | 744
745 | | 745
746 8 | printf("%s timer failed while being set.\n", process); | 746
747 9 | printf("Return code = %d\n", timer.retcode); | 747
748 10 | printf("Reason code = %d\n\n", timer.reason); | 748
749 | } | 749
750 | | 750
751 [L —— Dequeue an entry -------- *k | 751
752 11 | strncpy(key, "TARGET", 6); | 752
753 12 | length = | 753
754 13 | dequeue (length, key, datag, gname); | 754
755 | | 755
756 [L P Cancel timer ----- baisial) | 756

Figure 4-2 (Part 15 of 19). C/400 Compiler Listing for the Target Application

Page 15
INCNO

Chapter 4. Application Programming Examples 4-43

Line

757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786

STMT

14

15
16

17

18

19

21

22

23
24
25

—

5738CX1 V2RIMO 916329 IBM SAA C/400 UDCS_APPLS/TARGET S1016897 12/19/90 ©9:01:25
SEQNBR
ARTS PO PR JOR SN D R TR S S T CE] TR RE TRy PN L R T Devennnnn
| if (datag->msgid != OXFOF4) | 757
| | 758
| strncpy(timer.handlein, timer.handleout, 8); | 759
| timer.operation = 2; /* Cancel one timer */ | 760
| | 761
| QOLTIMER (&(timer.retcode), &(timer.reason), timer.handleout,\ | 762
| timer.handlein, (char *)gname, &(timer.operation),\ | 763
| &(timer.interval), &(timer.establishcount),\ | 764
| &(timer.keylength), timer.keyvalue, timer.userdata); | 765
| | 766
| if ((timer.retcode != 8) || (timer.reason != @)) | 767
| { | 768
| printf("%s timer failed while being canceled\n", process); | 769
| printf("Return code = %d\n", timer.retcode); | 770
| printf("Reason code = %d\n\n", timer.reason); | 771
| } | 772
I } | 773
| | 774
| if (datag->msgid != *expctid) | 775
| | 776
| printf ("A %.4X message ID was received instead of %.4X\n",\ | 777
| - datag->msgid, *expctid); | 778
| printf ("%s completion message was not received\n", process); | 779
| *expctid = datag->msgid; | 780
| | 781
| | 782
|} /* End settimer Subroutine */ | 783
| | 784
[| 785
|/ KARKAK KRKRRRK | 786
|/** x251ind: Read a record into buf and return length **/ | 787
| : | 788
|void x25Tind (qlindparms *qlind, char *1inename) | 789
1{ | 79
|register int counter; | 791
| | 792
| for(counter=0;counter<256;counter++) | 793
| qlind->userbuffer?? (counter??)=0; | 794
i | 79
| qlind->format = 0x01; | 796
| QOLQLIND (&(qlind->retcode), &(qlind->reason), &(qlind->nbytes),\ | 797
| qlind->userbuffer, linename, &(qlind->format)); | 798
| I 799
|} /* End x251ind Subroutine */ | 800
I | 8ol
| [rHntnnk *x HEREK * KRKKRRKKKXKRKK | | 862
|/** putdata: Read a record into buf and return length **/ | 803
| | 804
|void putdata (char *buf, | 805
| int dtalen, | 806
| FILE *fptr) | 887
| | ges
I{ | 889
lint i; | 810

Figure 4-2 (Part 16 of 19). C/400 Compiler Listing for the Target Application

4-44 As/400 System Programmer’s Communications Interface Guide

Page
INCNO

16

5738CX1 V2RIMO 910329 IBM SAA C/408 UDCS_APPLS/TARGET $1016897 12/19/90 09:81:25
Line STMT SEQNBR
U SO PR RN ST R ST SRR TETTS - PPUDE DUURY e SR STTTT e e e [
811] | 811
812 1] for (i =0; i <dtalen; i++) | 812
813 2 fwrite(buf + i, 1, 1, fptr); | 813
814 | | 814
815 |} /* End putdata Subroutine */ | 815
816 | | 816
817 | | 817
818 |/* Exception handler, so that a failure will not | 818
819 | ki1l the program, and any associated data!! */ | 819
820 | | 820
821 |void handler(disableparms disable, usrspace *gname) | 821
822 I{ | 822
823 | sigdata_t *data; | 823
824 | | 824
825 1| disablelink(&disable, "*ALL ", gname); | 825
826 2 | printf("The program received an excecption.\n"); | 826
827 3 | printf("Disable Link was called & the program was terminated.\n\n"); | 827
828 | | 828
829 4 | data=sigdata(); | 829
830 5 | ‘data->sigact->xhalt=0; | 830
831 6 | data->sigact->xrtntosgnler=0; | 831
832 7 | data->sigact->xresigprior=0; | 832
833 8 | data->sigact->xresigouter=0; | 833
834 | | 834
835 |} /* End handler Subroutine */ | 835

5738CX1 V2R1MO 9108329

—
=
O
=
o

WoONOU S WN -

Include Name
header
typedefs
stdio.h

“stddef.h

errno.h
signal.h
ctype.h
stdarg.h
stdlib.h
signal.h
xxasio.h
xxcvt.h
string.h
ctype.h
hexconv
stdio.h

*x k k Kk

IBM SAA C/460

Last cha
98/12/19
90/12/19
90/11/12
90/11/12
90/11/12
90/11/12
908/11/12
90/11/12
90/11/12
90/11/12
99/11/12
90/11/12
90/11/12
99/11/12
90/12/19
90/11/12

* kK kK X K

*

END
Figure 4-2 (Part 17 of 19). C/400 Compiler Listing for the Target Application

OF SOURCE **=*x=*x=x*

UDCS_APPLS/TARGET $1016897

* kK K kX Kk

nge

08:

17:

49:
:49:
124
:24:
124
:24:
:24:
:24:
:24:
:24:
:24:

END
Figure 4-2 (Part 18 of 19). C/400 Compiler Listing for the Target Application

INCLUDES ***x*xx
Actual Include Name
UDCS_APPLS/QCSRC/HEADER
UDCS_APPLS/OCSRC/TYPEDEFS
QCC/H/STDIO
QCC/H/STDDEF
QCC/H/ERRNO
QCC/H/SIGNAL
QCC/H/CTYPE
QCC/H/STDARG
QCC/H/STDLIB
QCC/H/SIGNAL
QCC/H/XXASIO
QCC/H/XXCVT
QCC/H/STRING
QCC/H/CTYPE
UDCS_APPLS/QCSRC/HEXCONV
QCC/H/STDIO

OF INCLUDES ***xx*xx

12/19/90 89:01:25

Page

17

INCNO

Page

Chapter 4. Application Programming Examples

18

4-45

5738CX1 V2RIM® 910329 IBM SAA C/406@ UDCS_APPLS/TARGET $1016897 12/19/90 ©9:01:25 Page 19
xxx* MESSAGE SUMMARY *x=*x=x*

Total Info(0-4) Warning(5-19) Error(20-29) Severe(30-39) Terminal (48-99)
0 0 0 (] [c]]
k*x*x* END OF MESSAGE SUMMARY *xx

5738CX1 V2RIM® 916329 IBM SAA C/400 UDCS_APPLS/TARGET $10816897 12/19/90 ©9:01:25 Page 20
ROUTINE BLOCK NUMBER SCOPE TYPE

<MAIN> 2 LOCAL MAIN-PROGRAM

_ sigdata 6 LOCAL PROCEDURE

__sgnl 12 LOCAL PROCEDURE

__frdinit 49 LOCAL PROCEDURE

__getrec 50 LOCAL PROCEDURE

__putrec 51 LOCAL PROCEDURE

_ frdexit 52 LOCAL PROCEDURE

__fwrinit 53 LOCAL PROCEDURE

_ fwrexit 54 LOCAL PROCEDURE

QXXFORMAT 129 LOCAL PROCEDURE

__strlen 164 LOCAL PROCEDURE

_ strncmp 168 LOCAL PROCEDURE

__stracpy 170 LOCAL PROCEDURE

inttohex 181 ENTRY PROCEDURE

hextoint 182 ENTRY PROCEDURE

sndformatl 197 ENTRY PROCEDURE

sndformat2 198 ENTRY PROCEDURE

setfilters 199 ENTRY PROCEDURE

byte 200 ENTRY PROCEDURE

printespec 201 ENTRY PROCEDURE

settimer 202 ENTRY PROCEDURE

dequeue 203 ENTRY PROCEDURE

putdata 204 ENTRY PROCEDURE

x251ind 205 ENTRY PROCEDURE

disablelink 206 ENTRY PROCEDURE

handler 207 ENTRY PROCEDURE

main 208 ENTRY PROCEDURE

Program TARGET was created in library UDCS_APPLS.
**xxx*x END OF COMPILATION **x*xx*x

Figure 4-2 (Part 19 of 19). C/400 Compiler Listing for the Target Application

4-46 AS/400 System Programmer’s Communications Interface Guide

The block nhumbers and explanations below correspond to those in the target
application’s program listing.

Call the C library routines fopen() and signal() to open the target file and
set up a signal handler to process AS/400 exceptions, respectively. If an
exception situation is encountered, the handler() will be called to perform
clean-up in order for the program to end.

Call the QOLELINK API to enable the line description using the line name
and communications handle passed as input parameters to this program.

Call the QOLTIMER API to time the completion of the enable link operation.
If the timer expires before the enable-complete message is posted on the
this program’s data queue, then this program will end.

ﬂ Call the QUSPTRUS API to obtain a pointer to the beginning of the output
buffer user space. The output buffer will be used to construct a filter list for
the call to the QOLSETF APIL.

B cCall the QOLRECV API to receive inbound data after reading an incoming
data message that was posted on the program’s data queue by the user-
defined communications support. Since these programs are operating
using the communications services of X.25, the first data unit the target
program should see is a X'"B201" operation signalling an incoming call was
received.

E Call the QOLSEND API with a X’B400’ operation to accept the incoming X.25
call. A connection is now established between the source and target appli-
cation programs.

‘The target program will now set a timer by calling the QOLTIMER API and

wait for incoming data. If the timer expires before any incoming data is
received, then this program will call the QOLDLINK API, and end.

E This is the main receive loop for the target program. When data is received
from the source program, it will be written to the target file opened during
the initialization of this program. The loop will process until a message
other than incoming-data entry is read from the program’s data queue.

ﬂ Call the QOLSEND API with a X"B001” operation to locally close the con-
nection.

Receives a X’B101” operation from the user-defined communications
support. This is a local confirmation of X"B100” operation.

Call the QOLDLINK API to disable the link previously enabled and end.

Chapter 4. Application Programming Examples 4-47

4-48 AS/400 System Programmer’s Communications Interface Guide

Chapter 5. Application Debugging

This section is intended to help an application programmer debug user-defined
communications applications. It contains information on:

* System services and tools
e Error codes reported to the application program and QSYSOPR operation
¢« Common error list

System Services and Tools

There are several tools on the AS/400 system that may be useful for debugging
the user-defined communications application. Some of the system provided
tools which may be useful for developing user-defined communications applica-
tions are:

* Program Debug (STRDBG)

* Work with Job, Work with Communications Status (WRKJOB
OPTION(*CMNSTS))

* Work with Job, Display Job Log (WRKJOB OPTION(*JOBLOG))

¢ Display Connection Status (DSPCNNSTS)

* Display Inbound Routing Data (using F6 after entering the DSPCNNSTS)
command

* System Service Tools (STRSST)
— Work with communications trace
— Work with error log

e Dump System Object (DMPSYSOBJ)

Program Debug
Program debug (STRDBG) allows a programmer to trace the program and vari-
ables, set stops, change variables, and display variables. This function can be
used to verify that the parameters are passed correctly.

Work with Communications Status

The Work with Job command, Work with Communications Status option,
(WRKJOB OPTION(*CMNSTS)) shows the enabled links and operation counts for
each link. Additionally, it reports information such as the communications
handle the last operation requested, and the total input, output, and other oper-
ations requested. This information is shown for every link enabled by the job.

Display Job Log
The Work with Job command, selecting the Display job log option (WRKJOB
OPTION(*JOBLOG)) is used to view the messages in the job log that will help
determine the exact cause of the problem.

Display Connection Status
The Display Connection Status (DSPCNNSTS) will show information about the
SVCs and PVCs that are in use by the application using the device description.

Note: The Display Line Description (DSPLIND) command can also show for each
line, the switched virtual circuits that are in use, available, or attached to a con-
troller description. This is not true for permanent virtual circuits.

© Copyright IBM Corp. 1991 5-1

Display Inbound Routing Data
Display Inbound Routing Data is accessed by using function key 6 (F6) while in
the Display Connection Status (DSPCNNSTS) command. Using this command
will show the results of the calls to QOLSETF. It can also help determine which
device description has set a filter with duplicate inbound routing information.

Work with Communications Trace

The Work with Communications Trace function is part of the system service
tools, accessed by issuing the Start System Service Tools (STRSST) command.

Work with Communications Trace will show data just as it appears to the
network. If the application requests that data be sent and the request does not
appear in the communications trace, the request will be rejected. The return
and reason codes, and the error code reported in the parameter list of QOLSEND
will indicate the reason the request was rejected.

Work with Error Log
The Work with Error Log function is part of the system service tools, accessed by
issuing the Start System Service Tools (STRSST) command.

Some errors are reported by the system to the error log. A remote application
that is communicating with a user-defined communications application on the
local system, could cause an entry to be generated in the error log if one of the
following conditions are met:

* When using a LAN, data is not received by the application and exceeds
internal threshold values (3 Mb).

« When using an X.25 network, data is not received by the application and
exceeds internal threshold values (128KB).

For both cases, the associated message in QSYSOPR will identify the error log
that contains the error log entry. The error log entry contains information only.

5-2 As/400 System Programmer’s Communications Interface Guide

Dump System Object to View User Spaces

The Dump System Object (DMPSYSOBJ) command can be used to inspect the
user spaces after they are filled in by the application. The examples shown indi-
cate what the user spaces look like for.some of the operations.

User Space to Set a Filter to Route Inbound Data

This user space is filled in to activate two X.25 filters which will route any X.25
call containing X'BB', or X'DD' in the first byte of call user data (protocol ID

byte).
5738SS1 VZRIMO 910524 AS/400 DUMP 006625/QSECOFR/QPADEV000L 12/21/96 12:42:07 PAGE 1
DMPSYSOBJ PARAMETERS
0BJ- OUTBUFFER CONTEXT-USRDFNCMN
OBJTYPE- *USRSPC
OBJECT TYPE- SPACE *USRSPC
NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34
LIBRARY- USRDFNCHN TYPE- 04 SUBTYPE- 01
CREATION- 12/21/90 12:40:03 SIZE- 00002200
OWNER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRIBUTES- 0800 ADDRESS- 00AG0AOD 0000
SPACE ATTRIBUTES-
000000 00DOOOSO 00000060 1934D6E4 E3C2E4C6 C6C5D940 40404040 40404040 40404040 * - OUTBUFFER *
000020 40404840 40404040 EODDOOO0 DOOOOOOO 0OOO2000 00800000 HOOOOOOO 00ROBO0O * \ *
000040 00DOOOOO OOOOANS 0OO5004D 42000400 0OOOOOGO OOEEAREE OOOOEOOO 0BEEEO00 * (a *
SPACE-
000000 01000002 0O1001BB 0OOOOOOO BOGOOOOO 00000000 GAEEE1DD OEEOE00O ABEBOOOE * Y t *
000920 0ODAOOBO 0OOOEOD HOOOOOEO DOOOOO00 00000000 GEEEEEOO 0BOO0000 HEEO0000 * *
LINES 080040 TO BO1FFF SAME AS ABOVE
POINTERS-
NONE
0IR DATA-
TEXT-
000080 DBD7C1C4 C5E5FOFO FOF1DSE2 C5C3D6C6 D9404040 FOFOF6F6 F2F5 *QPADEVOOB1QSECOFR 006625 *
SERVICE-

1
V2R1M00901221124004

000000 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040
000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2FAFG FOF44040
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040
000060 40404040 40404040 40404040 40404040 40404040 40404040 0OOE0OGO0 EOOEO0OO
000080 0OOCOOGO OOOOOOEO BEOOOOOO 0OGOOEEEG OGOCOEOC 0OOBO0EE 40400000 BOEEO0OO
0000AD BOBOOOBO DOBOEOEO

END OF DUMP

* ¥ F F % *
*FO¥ R OF OF ¥

Ak kk ok END OF LISTING ** %%

Figure 5-1. User Space to Set a Filter to Route Incoming X.25 Calls

Chapter 5. Application Debugging 5-3

User Space for X'B000' Operation, Initiating an SVC Call

The user space below has been filled in to initiate an SVC call specifying the
following:

57385SS1 VZRIMO 910524
DMPSYSOBJ PARAMETERS
0BJ- OUTPUTBUF
OBJTYPE- *USRSPC

default packet and window sizes

D-bit {not selected)

reverse charging (not selected)

fast select (not selected)

closed user group (not selected)

other facilities (not selected)

one byte of call user data, X'BB', which is the protocol identifier
X.25 reset not supported by the user-defined communications application
program

16KB is the maximum amount of contiguous data to be received
automatic flow control value of 32

AS/400 DUMP 006625/QSECOFR/QPADEVE0O1 12/21/90 12:47:42

CONTEXT-USRDFNCMN

OBJECT TYPE- SPACE *USRSPC
NAME- OUTPUTBUF TYPE- 19 SUBTYPE- 34
LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- 01
CREATION- 12/21/96 12:36:28 SIZE- 00001200
OWNER- QSECOFR TYPE- 08 SUBTYPE- 01
ATTRIBUTES- 0800 ADDRESS- 00AG0106 0000
SPACE ATTRIBUTES-
000G00 00000080 DOOOOO60 1934D6E4 E3D7E4E3 C2EAC640 40404040 40404040 40404040 * - OUTPUTBUF
000020 40404040 40404040 EO0OOOO0 0OEOOGOO 0001000 CO8OOOOO DOOCOCEE 000EOOOO * \
000040 00000600 COOOBEEO 0005004D 42000400 0O00O6E0 COCOOCO0 BOOOOOOE 0000BOOO * (a
SPACE-
000000 02000000 FFFFFFFF FFFFFFFF 00000000 00000008 40100001 00G00CE0 000OOO0E *
000020 00000000 0OOOOBO0 GOBOOOOO 00OOCOOOO GOOOEOGO OOOOOOOO 0OOOOOBO 0O0OBOOGD *
LINES 000040 TO OOBOBF SAME AS ABOVE
0000CO 0GOO0OOO 00600 COOOOOOO 0OCBOCOG BGOOOCOCOO0 COCO0O01 BBOOEOGE 0GGGOOOO * Y
OCOOEG 00000000 OOOOOOOO GOOOOONG 0000COOE GOOOEOCO 0OOEEOO0 0000OOEO 0OOOOOEE *
LINES 000100 T0 0001BF SAME AS ABOVE
0001CO 000OCE00 0OOOOCOO GOOOOOOO 0OOOOOOO 00OOEECO BOOOOOOO 000OOOBO 00OB4060 *
O0O1EO 06200000 0000000 0OOOOOOO 0GOOOOO0 00000000 0000000 DOOOCOOC 0GOGOOOO *
000200 00000OGOC 0OOOOCEO 000OCOOO OGCOCO0O 0O0OOOCO 0OCOOOO0 BOOGOOCO 000DBOOO *
LINES 000220 T0 OOOFFF SAME AS ABOVE
POINTERS-
NONE
OIR DATA-
TEXT-
000000 D8D7C1C4 C5ESFOFO FOF2DBE2 C5C3D6C6 D9404040 FOFOF6F6 F2F7 *QPADEVOBO2QSECOFR 006627
SERVICE-
600080 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1
600020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FOG F1F2F2F1 F1F2F3F6 F2F84040 * VZR1MO0901221123628
000040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 *
000060 40404040 40404040 40404040 40404040 40404040 40404040 000000BO 00OOBOOD *
000080 0DEOOOOO DOOOOOOO DOOCOOEO OOEOOOEG OCODOOOBO OOROOEOO 40400000 0OOOOEOD *
000BA0 000000BO BBOBERBO *
END OF DUMP
*xxx*x END OF LISTING ****

Figure 5-2. User Space to Send an SVC Call

5-4 As/400 System Programmer’s Communications Interface Guide

* % Ok % F ¥

PAGE

User Space Containing an Incoming X.25 Call, Operation X'B201'

This user space shows following:

« the call is using SVC 005
both transmit and receive packet sizes are 128
both transmit and receive window sizes are 7
the calling DTE address is 40100000
no other facilities are requested

one byte of call user data, X'BB', which is the protocol identifier

The application received this call because it had set a filter to indicate to the

system that it should route incoming X.25 calls that have the first byte of call
user data (the protocol identifier) equal to X'BB' to the application.

5738581 V2RIMB 910524
DMPSYSOBJ PARAMETERS
0BJ- INBUFFER

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE
NAME- INBUFFER
LIBRARY- USRDFNCMN
CREATION- 12/21/90 12:40:
OWNER- QSECOFR
ATTRIBUTES- 0800
SPACE ATTRIBUTES-
000000 0£OOOODBO 00BEOO6E
000020 40404040 40404040
000040 00OOGEEO 0OOOOEEG
SPACE-
000000 00COBBE5 0080OEA7
000020 00COOOOO 0OOEEOOE
LINES 000040 T0
0000C0 000COOEE BOOEOE0DE
0DGOE® 00OOOOGE 00EEOOEE
LINES 000100 TO
POINTERS-
NONE
OIR DATA-
TEXT-
000088 D8D7C1C4 C5E5FOFO
SERVICE-
000000 40404040 40404040
000020 40404040 40404040
000040 40404040 40404040
000060 40404040 40404040
000080 £OBOCOEE 000BO0DO
0000AC 00OOOOOGO 0ODEOOOE
END OF DuMP

AS/400 DUMP

CONTEXT-USRDFNCMN

*USRSPC

TYPE- 19 SUBTYPE- 34

TYPE- 04 SUBTYPE- 01
03 SIZE- 00002200

TYPE- 08 SUBTYPE- 01

ADDRESS- DOAGO400 0000
1934C9D5 C2E4C6C6 C5D94040 40404040 40404040 40404040
EO0000G0 00DOOEEO GOGO2000 GO80OR0O 00EEOOEO OOOOEOOO
0005004D 42000400 00000OO0 0COOOOOO 0GOEEOO0 OOOBOLOO
00800007 00COOOOG OOOOOOO8 40100000 0OCOEOO0 OBOOOEOO
00000000 0OOOOGOE OBOOOOOO 0CEOOOOO BEOOOBOO OOOBOLOO

OOBOBF SAME AS ABOVE
00000000 000COOOG OOBOBOOO 0OCOOGO1 BBOOOOGO OOOOOGOO
00000000 00000CO0 00000000 DODOOOOCO OOOOOGOO 6OOBOOOO
OO1FFF SAME AS ABOVE
FOF1DBE2 C5C3D6C6 D9404040 FOFOF6F6 F2F5
40404040 40404040 40404040 40F14040 40404040 40404040
404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2FAFO FOF34040
40404040 40404040 40404040 40404040 40404040 40404040
40404040 40404040 40404040 40404040 00000000 00BOOOGO
00000000 00000006 OOOEOOOO OOCO0B00 40400000 000OOOO0
***xx* END OF LISTING

Figure 5-3. User Space Containing an Incoming X.25 Call

006625/QSECOFR/QPADEVEOO1

* ¥

*

*

*QPADEVOBO1QSECOFR

* ¥ F ¥ % ¥

* k k &k X

\

12/21/99 12:47:55

INBUFFER

(a

006625

1
V2R1MB0901221124003

Chapter 5. Application Debugging

PAGE

* ¥ ¥ ¥ * ¥

5-5

User Space to accept an Incoming X.25 Call, Operation X'B400'

This user space was filled in to accept the incoming call, request default packet
and window sizes, and no other additional facilities. The a maximum amount of
contiguous data is set at 16KB and the automatic flow control is set at 32.

5738SS1 V2RIMO 910524 AS/480 DUMP 006625/QSECOFR/QPADEVBOOL 12/21/98 12:48:86 PAGE

DMPSYSOBJ PARAMETERS

0BJ- OUTBUFFER CONTEXT-USRDFNCHN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 04 SUBTYPE- ol

CREATION- 12/21/98 12:40:63 SIZE- 06002260

OWNER- QSECOFR TYPE- 08 SUBTYPE- o1

ATTRIBUTES- 0800 ADDRESS- 00ABABD 6080

SPACE ATTRIBUTES-
000080 00000080 BOBOBO6O 1934DGEA E3C2EAC6 C6C5DI40 40484040 40404040 40404040 * - OUTBUFFER *
000020 40484040 40404040 EGOBOG0 0G0GPOE0 06062000 BBB00B0 AGBOE0 HOE0BROD * \ *
000040 6000000 BOBOBOBO HOO5004D 42009460 0BOOBOO OHOBEBRO 0BERAO HOBGB0ED * (a

SPACE-
000000 08080080 FFFFFFFF FFFFFFFF 09000060 08060000 060G0G00 0800080 B0B0B00D * *
000020 0POBOAOO BOAOBGAO 0AGBOBOO 0OOE0B00 0HABABOE BOBEAAGO B00HBBOO 0BOBEABD * *

LINES 000840 TO OBOIBF SAME AS ABOVE
0001CO 060BOBOO BOOOAOBO 0BOBOBRO BROEOER0 0HOBOA0E B0B0EA0O BOBOBOD 0804080 * *
0001E0 00200000 BOBOBOBO 0B0B0BR0 0PGGEO0 0BOAOA0O BOB00A0O 60000600 0B0BOBO * *
000200 000B0G00 0OOAOE0O 0AGOGORO 0GPOBE08 0BOBROE0 HEBAROE 0POBB0ED 6008000 * *
LINES 800220 TO BOLFFF SAME AS ABOVE

POINTERS-
NONE

OIR DATA-

TEXT-)
000000 DBD7CLC4 C5E5FOFO FBFIDBE2 C5C3D6C6 DI464640 FOFOF6F6 F2F5 *QPADEVODO1QSECOFR 006625 *

SERVICE-
000000 48404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *
000020 40484840 40404040 464640E5 F2DOFID4 FOFOFOF® FIF2F2F1 FIF2FAFO FOF44840 * V2R1MOB901221124004 *
000040 40404040 40404048 40404040 40404040 40404040 40404040 40484040 40404040 * *
000060 40404040 40404040 40404040 40404040 4D4DAD4D 40404040 00B000 6000000 * *
000080 000000 BOBOBOGO GBGB000 B00G0E08 0EOHOB0 BOB0BRED 40408000 B0BBE0E * *
0800AB 0G0E0GO HOBEAORO * *

END OF DUMP

* Kk ok X X

Figure 5-4. User Space to Accept an Incoming X.25 Call

5-6 As/400 System Programmer’s Communications Interface Guide

END OF LISTING *=*

User Spaces for Sending Data, Operation X'0000'

Two user spaces are shown below. The first is the output buffer and the second
is the output buffer descriptor.

The user spaces below are filled in to send three data units of 512 bytes each.
The first two data units have the more data indicator turned on, indicating that all
the data units are contiguous.

Note: This link was enabled, specifying a data unit size of 512 bytes.

5738SS1 VZ2RIMO 910524
DMPSYSOBJ PARAMETERS
0BJ- OUTPUTBUF
OBJTYPE- *USRSPC

OBJECT TYPE- SPACE
NAME- OUTPUTBUF
LIBRARY- USRDFNCMN
CREATION- 12/21/90 12:36:
OWNER- QSECOFR
ATTRIBUTES- 0800
SPACE ATTRIBUTES-
000000 ©OOBOOSO DOEEEE6O
000020 40404040 40404040
000040 000COOOO BGEEOBOO
SPACE-
0000B0 FOF10000 BOOOBOOO
000020 0BOGOOOO ODEEEOOO
LINES 000040 T0
000200 FOF20000 0OOEEEOO
000220 00OOOOOO DOOOOEBEO
LINES 000240 T0
000400 FOF30000 0OGCOBOEE
000420 0000OOCO BOOOOEEO
LINES 000440 T0
POINTERS-
NONE
OIR DATA-
TEXT-
008066 D8D7C1C4 C5E5FOFO
SERVICE-
000000 40404040 40404040
000020 40404040 40404040
000040 40404040 40404040
000060 40404040 40404040
000080 0OOGOOOO DOOBOOEO
D0GOA0 0000OCOG BOEEBOBO
END OF DUMP

1934D6E4
E0000000
0085004D

00000000
00000000
OBB1FF
00000000
00000000
0BO3FF
00060000
00000000
O0OFFF

FOF2D8E2

40404040
404040E5
40404040
40404040
00000000

AS/400 DUMP

CONTEXT-USRDFNCMN

*USRSPC
TYPE- 19 SUBTYPE- 34
TYPE- 04 SUBTYPE- 01
SIZE- 00001200
TYPE- 08 SUBTYPE- 01
ADDRESS- 00ADD100 0008
E3D7E4E3 C2E4C640 40404040 40404040 40404040
00000OBEO 0POO1006 0OBG000O 0OOCOEOBE 00OBO0O0
42000400 0PODOOEO 0GOOOEOO BOGOOEOO 6OOEEEOO
00000000 ©OOOOOGE OPOGOOOE BO0OEOCO 0OEEO0OO
000000EO0 DEOEOOOG OOBEO0OE 000DEOOD 0OEEO0EE
SAME AS ABOVE
00000000 00000000 0OGOBEO0 DOLOOBEO BEEEOOOO
00000000 00OG00OO 06000 EOOEEEOO OBEO00O
SAME AS ABOVE
00000000 0000000 GO0 BOOOC00 HBOEO00B
000BO0EO 0POEE00O GOOOEOOO BOOOCO0 0OEEEOCE
SAME AS ABOVE
C5C3D6C6 D9404040 FOFOF6F6 F2F7
4D404040 40404040 40F14040 40404040 40404040
F2D9F1D4 FOFOF9FOG F1F2F2F1 F1F2F3F6 F2F84040
40404040 40404040 40404040 40404040 40404040
4p404040 40404040 40404040 00000000 BOOOEOOO
000600G0 DOOOEEOE 0OOEOOOO 40400000 00OE00CE

* Kk k Kk X

END OF L

Figure 5-5. User Space (Buffer) to Send Three Data Units

ISTING ***

006625/QSECOFR/QPADEV00OL

12/21/90 12:55:19

* - OUTPUTBUF
* \

* (a

*91

*

*02

*

*03

*

*QPADEVOQO2QSECOFR 006627

* 1

* V2R1M0901221123628
*

*

*

*

* *

Chapter 5. Application Debugging

PAGE

¥ ¥ ¥ ¥ ¥ *

5-7

5738SS1 VZRIMG 910524
DMPSYSOBJ PARAMETERS
0BJ- OUTPUTBUFD
0BJTYPE- *USRSPC

OBJECT TYPE- SPACE
NAME- OUTPUTBUFD
L IBRARY- USRDFNCMN
CREATION- 12/21/90 12:36:
OWNER- QSECOFR
ATTRIBUTES- 0800
SPACE ATTRIBUTES-
000000 0OOOOB8D BOOOOBEO
DOOD20 40404040 40404040
000R40 BDODOOED DOOOOOOO
SPACE-
00PEEE (02000160 0OOEOOGO
000620 02000100 ©OGEDBOO
000040 02000000 06EEOCER
000060 0OOCOOOO DOEOEBOB
LINES 000080 T0
POINTERS-
NONE
OIR DATA-
TEXT-
000000 D8D7C1C4 C5ESFOFO
SERVICE-
000006 40404040 40404040
000020 40404040 40404040
000040 40404040 40404040
0D0B6E 40404040 40404040
000080 0BBOOOOO BOOOOOBO
0000AD 0OBDOOOO 0B0O000O
END OF DUMP
Figure

5-8 AS/400 System Programmer’s Communications Interface Guide

1934D6E4
EQ000000
0085004D

00000000
[elelofefelolele]
00000000
00000000

BOO1FF

FOF2D8E2

40404040
404040E5
40404040
40404040
00000000

AS/400 DUMP

CONTEXT-USRDFNCMN

006625/QSECOFR/QPADEVO0O1

12/21/90 12:55:58

*USRSPC
TYPE- 19 SUBTYPE- 34
TYPE- 04 SUBTYPE- 01
SIZE- 00008400
TYPE- 08 SUBTYPE- 01
ADDRESS- BO9FFEGD 0000
E3D7E4E3 C2EAC6C4 40404040 40404040 40404040 * - OUTPUTBUFD
00000000 0OBEE2A0 0HBAABOE BHOROA0 B0AOBEBD * \
42000400 00B0OEOO HBOAGB0O BOEOBORO BOAERBED * (a
00000006 0000AGGO EOAOBEE BOOBOR0D HOAOR0RD *
00000000 000000RE BOEOEORO BEBABEO 0PEOEOAD *
00000000 0DO0OBEO 0AOBERO 0HOAOACO BABOBEBD *
00008000 0B0OBOEO HOABEOO BOBOA0B0 BGE0BORE *
SAME AS ABOVE
(5C3D6C6 D9404048 FOFOF6F6 F2F7 *QPADEVBOB2QSECOFR 006627
40404040 40404840 40F14040 40404040 40404040 * 1
F2D9F1D4 FOFBFOFO F1F2F2F1 FLF2F3F6 F2F74040 * V2R1MBE901221123627
40404040 40404040 40404040 40404040 40404040 *
4D404040 40404040 40404040 0OROBOBO DBOBEBOD *
00000008 0000000B BOEAAOE 40409000 BOA0REOD *
*
x*kxxx END OF LISTING ***xx

5-6. User Space (Descriptor Element) to Describe the Three Data Units

*

* % * %

* % %k * ¥ %

PAGE

User Spaces for Receiving Data, Operation X'0001'

Two user spaces are shown below. The first is the input buffer and the second
is the input buffer descriptor.

The user spaces below are filled in showing that 2 data units were received.
The first data unit has the more data indicator turned on in the buffer descriptor
for the data unit. This means that the X.25 more indicator was turned on in all
the X.25 packets that this data unit contains. The second data unit does not have
the more data indicator turned on, indicating that the last X.25 packet in the data
unit had the X.25 more indicator turned off. The first and second data unit are
considered to be logically contiguous to the user-defined communications appli-
cation program.

Note: This link was enabled specifying a data unit size of 1024 bytes. The
sending system sent the data in data unit sizes of 512 bytes and they were com-
bined into the 1024 byte data unit size by the local system. The data unit size is
not negotiated end-to-end, neither is the maximum amount of contiguous data or
the automatic flow control. Because the values are important, each application

should be aware of what the other application has specified for each value.
Refer to “Sending and Receiving Data Packets” on page 3-12 for more informa-

tion.
5738551 VZRIM@ 910524 AS/400 DUMP
DMPSYSOBJ PARAMETERS
0BJ- INBUFFER CONTEXT-USRDFNCMN
OBJTYPE- *USRSPC
OBJECT TYPE- SPACE
NAME- INBUFFER TYPE-
LIBRARY- USRDFNCMN TYPE-
CREATION- 12/21/90 12:40:03 SIZE-
OWNER- QSECOFR TYPE-
ATTRIBUTES- 0800 ADDRESS-
SPACE ATTRIBUTES-
000000 0OEOOASO BOBOOBEO 1934C9D5 C2E4C6C6 C5D94040
000020 40404040 40404040 E0BOOGE0 BOOBOOBE 0OOB2000
000040 0OOOOAOO DOPOOBOO 0OB5004D 42000400 0OOBO0DO
SPACE-
000000 FOF10800 GOH00000 00BOOGOO DOAEOREO 00ABOBAG
000020 ©OCO0ROO GOBOEBOO OOBOOAOO DOEEEEOO ©OOBE0O
LINES 000040 TO 0GOBIFF SAME AS ABOVE
000200 FOF20000 DOPOOBOG OAEOOBEO HOEEEEEO 0OAEO0EO
000220 0OMOOBOO OOROOREO GOROOAEO DOEROORO BOOBO0O
LINES 000240 TO 00@3FF SAME AS ABOVE
000400 FOF30000 00POGO0O 0PBOOBOO DOAGOBEO 0OPOOBEO
000420 00GOGOOD OEOOROOR 0POOBOOO GODOOBEO 0BEOOEEO
LINES 000446 TO OO1FFF SAME AS ABOVE
POINTERS-
NONE
0IR DATA-
TEXT-
000800 D8D7C1C4 C5E5FOF® FOF1DSE2 C5C3D6C6 D9404040
SERVICE-
000000 40404046 40404040 40404040 40404040 40404040
000020 40404040 40404040 4D4040FE5 F2D9F1D4 FOFOFOFO
000040 40404040 40404040 40404040 40404040 40404040
000060 40404040 40404040 40404040 40404040 40404040
000080 00OGOOGOC 0AOOROOD 0BOOREOO 0OGEEREO 0AREOEOO
0000A0 DOBOOBOO 0OEOOCO
END OF DUMP

* k Kk Kk K

006625/QSECOFR/QPADEVOBO1

19
04

*USRSPC

SUBTYPE-
SUBTYPE-

00002200

08

40404040
00800000
00000000

000006060
00000000

00000000
00000000

00000000
00000000

FOFOF6F6

40F14040
F1F2F2F1
40404040
40404040
00000000

SUBTYPE-
00ABB400

0000

40404040
00000000
00000000

00000000
00000000

00006000
00000000

00000000
00000000

F2F5

40404040
FLF2F4FO
40404040
00000000
49400000

Figure 5-7. User Space (Buffer) Containing the Three Data Units

34
01

01

40404040
00000000
00000000

000000600
00000000

00000000
000000060

00000000
00000000

40404040
FOF34040
40404040
00006000
00000000

END OF LISTING * **

12/21/90 12:59:33

* - INBUFFER
* \

* (a

*01

*

*02

*

*03

*

*QPADEVOBB1QSECOFR 806625
* 1

* V2R1MO8901221124003
*

*

*

*

Chapter 5. Application Debugging

PAGE

* ¥ F F % ¥

5-9

57385S1 VZRIMG 910524
DMPSYSOBJ PARAMETERS
0BJ- INBUFFERD
OBJTYPE- *USRSPC

OBJECT TYPE- SPACE
NAME- INBUFFERD
LIBRARY- USRDFNCMN
CREATION- 12/21/90 12:40:
OWNER- QSECOFR
ATTRIBUTES- 0800
SPACE ATTRIBUTES-
000000 00OOEEB0 OOOBE060
000020 40404040 40404040
000040 0OOOOOGO OOODEOBO
SPACE-
000000 04000100 00EOOOOO
000020 02000000 0BOOOORO
000040 00OEOGOO 6OGEO0OO
LINES 000060 T0
POINTERS-
NONE
OIR DATA-
TEXT-
000000 D8D7C1C4 C5E5FOFO
SERVICE-
000000 40404040 40404040
000020 40404040 40404040
000040 40404040 40404040
000060 40404040 40404040
000080 0BOOOGGOOO 000006AO
0000AD 00000C0O 0OODEO0O
END OF DUMP

03

1934C9D5
EGG00000
0005004D

00000000
00000000
00000000

O0B1FF

FOF1D8E2

40404040
404040E5
40404040
40404040
00000000

AS/400 DUMP

CONTEXT-USRDFNCMN

TYPE-
TYPE-
SIZE-
TYPE-
ADDRESS-
C2E4C6C6 C5D9C440
0000BOBO 00000200
42000400 0000000
00000000 BODCO00O
00000000 6O0CO000
00000000 00000000
SAME AS ABOVE
C5C3D6C6 D9404040
40404040 40404040
F2D9F1D4 FOFBF9FO
40404040 40404040
40404040 40404040
00000000 BOBOOOOD

* k Xk k %

19
04

006625/QSECOFR/QPADEVEOOL

*USRSPC

SUBTYPE-
SUBTYPE-

00000400

08

00ABB200

40404040
00800000
00000000

00000000
00000000
00000000

FOFOF6F6

40F14040
F1F2F2F1
40404040
40404040
00000000

SUBTYPE-

0000

40404040
00000000
00000000

00000000
00000000
00000000

F2F5

40404040
F1F2F4F0
40404040
00000000
40400000

40404040
00000000
00000000

00000060
00000000
00000000

40404040
FOF34040
40404040
00000000
00000660

END OF LISTING ***

Figure 5-8. User Space (Descriptor Element) Describing the Three Data Units

5-10 As/400 System Programmer’s Communications Interface Guide

12/21/90 12:59:41

- INBUFFERD
\
(a

*
*
*
*QPADEVOOO1QSECOFR 006625
* 1
* V2R1MD0901221124003
*
*
*
*

* % Ok F ¥ %

PAGE

User Space to Clear a Connection or Call, Operation X'B100'

This user space was filled in to end an SVC connection or clear an incoming call.
No facilities or clear user data are requested with this, but cause and diagnostic
codes are specified (these are not ISO or SNA codes).

5738SS1 VZRIMG 910524 AS/480 DUMP 006625/QSECOFR/QPADEVE0O1 12/21/96 13:14:48 PAGE

DMPSYSOBJ PARAMETERS

0BJ- OUTBUFFER CONTEXT-USRDFNCMN

OBJTYPE- *USRSPC

OBJECT TYPE- SPACE *USRSPC

NAME- OUTBUFFER TYPE- 19 SUBTYPE- 34

LIBRARY- USRDFNCMN TYPE- 064 SUBTYPE- 01

CREATION- 12/21/90 12:40:03 SIZE- 00062200

OWNER- QSECOFR TYPE- 08 SUBTYPE- 01

ATTRIBUTES- 0800 ADDRESS- 0OABOAGD 0000

SPACE ATTRIBUTES-
0000EG 0OODO8D DOOOOB6O 1934D6E4 E3C2E4AC6 C6C5D940 40404040 40404040 40404040 * - OUTBUFFER *
000020 40404040 40404040 EO0OO0O0 00OGOOGO 00002000 GOSOODOO 0OOOOOOG 000OOEEO * \ *
000040 £OOOODOO 0OOCOOBO 0OG5004D 42000400 ©OOOOEO0 0ODOOBOO 0OBODEOO OOOOBOOE * (a *

SPACE-
000000 OOCOBEBE 00000000 0OOOGOCO QODOEOEE 0OOOOEOE OOEODGOD OPDOODOGE DABEEOBO * XX *
000020 0GOOOCOOO 0OOCOOOO EOOEOOOO DOOBOEEE OEGOAEGO GEOOOEO0 EEOOOEOO 0OOBEOOE * *

LINES 000040 T0 OOLFFF SAME AS ABOVE

POINTERS-
NONE

OIR DATA-

TEXT-
000000 DBD7C1C4 C5E5FOFO FOF1D8E2 C5C3D6C6 D9404040 FOFOF6F6 F2F5 *QPADEVOOO1QSECOFR 006625 *

SERVICE-
000008 40404040 40404040 40404040 40404040 40404040 40F14040 40404040 40404040 * 1 *
000020 40404040 40404040 404040E5 F2D9F1D4 FOFOF9FO F1F2F2F1 F1F2F4FO FOF44040 * VZR1MO0901221124004 *
000048 40404040 40404040 40404040 40404040 40404040 40404040 40404040 40404040 * *
000060 40404040 40404040 40404040 40404040 40404040 40404040 0000000 00OOOEOO * *
000080 ©00OCO0O 00OBEEOO 0OOEOCEO BOOBOOOG 0GOOEE00 OEOOOEOC 40400000 00DEOOEE * *
000BAO 0000000 ©OOBEBOO * *

END OF DUMP

* k k %k %

END OF LISTING *****

Figure 5-9. User Space to Send an SVC Clear

Error Codes

The system and user-defined communications support will report important infor-
mation which can be useful in determining recovery actions. These are typically
referred to as error codes and are reported either to the job log or to the
QSYSOPR message queue.

In some cases error codes are reported to the application in the error specific
parameter. This section lists the valid error codes. Some of the error codes
represent actual coding errors, others only report additional information.

LAN Error Codes

Table 5-1 on page 5-12 shows the hexadecimal codes which are valid for an
application to receive as a result of a call to QOLSEND using operation code
X'0000'. They indicate that the data was never sent on the line. Associated with
these error codes is a message in QSYSOPR, indicating the device description
that caused the error, and the error code. After receiving the error code, the link
will still be enabled and usable.

To an application, these error codes indicate that a coding error was made and
should be corrected.

Chapter 5. Application Debugging 5-11

X.25 Error Codes

Table 5-1. Error codes received while sending data over LAN
Error Code Description Cause
3300 2A55 Routing length not valid Routing length is not valid, or
length does not equal length
in routing field.
3300 2A5D Maximum frame size limit Length of data is greater than
exceeded maximum frame size sup-
ported by the source SAP
5300 2A7B Access Control not valid Access Control specified is
not supported
3300 2AAS SAP address not valid SAP address is not configured
in the line description
3300 2AA9 SAP address not valid SAP address is not configured
in the line description
3300 2AD4 Data length too small Data must be at least 48
(Ethernet Version 2 only) bytes long (46 bytes of data,
plus 2 bytes for the Ethernet
type field)
3300 2ADS Ethernet type field is not valid Ethernet type field (first two
(Ethernet Version 2 only) bytes of data)

Table 5-2 shows the error codes which are valid for an application to receive as
a result of a call to QOLSEND with operation X'B400' to accept an SVC call, or a
call to QOLRECV which returns the results of the open connection request opera-
tion, X'B101!', or the connection failure indication, reported by operation
X'B301'.

To an application, these error codes indicate that a coding error was made, or a
failure condition occurred.

Table 5-2 (Page 1 of 2). Error codes reported on X’B001’, X’B301’, and X’B400’
operations
Error Code Description Cause
3200 3050 Restart in progress Temporary condition; retry
operation
3200 3172 Outgoing channel not avail- Temporary condition; retry
able operation
3200 3368 Remote address length not Remote address length not
valid supported by the network
3200 3384 Facility field error A facility was encoded incor-
rectly or a duplicate facility
was encoded
3200 3388 Facility field too long The total length of the facili-
ties, which includes user-
specified facilities, the NUI
facility from the line
description, and system gen-
erated facilities, exceeded
X.25 limits (109 bytes)
3200 338C Response restricted by fast User data is not allowed with
select restriction

5-12 AS/400 System Programmer’s Communications Interface Guide

Table 5-2 (Page 2
operations

of 2). Error codes reported on X’B001’, X’"B301’, and X’B400’

Error Code

Description

Cause

3200 3394

User data not allowed

User data is not allowed on
the call accept if fast select
was not requested.

3200 33CC

Call user data length not valid

The length of call user data is
greater than 16 and fast
select is not selected.

4200 3210

Reset request transmitted

The virtual circuit was reset
by the local system. Refer to
cause and diagnostic codes to
determine recovery.

4200 3220

Clear request transmitted

The virtual circuit was cleared
by the local system. Refer to
cause and diagnostic codes to
determine recovery.

4200 3230

Restart request transmitted

The virtual circuit was cleared
by the local system. Refer to
cause and diagnostic codes
for more information.

4200 3280

Time-out on call

Call timed out

4600 3134

Clear indication was received

The virtual circuit was cleared
by either the remote system
or the network. Refer to
cause and diagnostic codes
for more information.

4600 3138

Restart indication received

Temporary condition; refer to
the cause and diagnostic
codes reported to correct the
problem, then retry the oper-
ation

BADD 4D10

The maximum data unit
assembly size was exceeded
by a remote system; the con-
nection has been cleared
(SVC) or reset (PVC).

A remote system has sent
many X.25 packets to the
local system with the more
indicator on. The combined
total length of the data in this
sequence of packets, which
have the more indicator on,
has exceeded the maximum
data unit assembly size speci-
fied by the user-defined com-
munications application on
the open connection request
(X'B000").

Table 5-3 on page 5-14 shows the error codes that are valid for an application to
receive as a result of a call to QOLRECV with an operation code returned as

X'B101'.

To an application, these error codes indicate that the connection was cleared or
reset for the following reasons.

Chapter 5. Application Debugging

5-13

Table 5-3. Error codes reported on the X'B101’ operation

Error Code

Description

Cause

3200 3388

Facility field too long

The total length of the facili-
ties, which includes user-
specified facilities, the NUI
facility from the line
description, and system gen-
erated facilities, exceeded
X.25 limits (109 bytes)

3200 3394

User data not allowed

User data is not allowed when
fast select is not selected.

3200 33CC

Call user data length not valid

The length of call user data is
greater than 16 and fast
select is not selected.

4200 3240

Time-out on reset

The clear request resulted in
an X.25 reset, which timed out

4200 3284

Time-out on clear

The remote system did not
respond to the CLEAR within
the time-out value

4600 3134

Clear indication was received

The virtual circuit was cleared
by either the remote system
or the network. Refer to
cause and diagnostic codes
for more information.

Table 5-4 shows the error codes that are valid for an application to receive as a
result of a call to QOLRECYV, returning the operation code, X'BF01'.

To an application, these error codes indicate that the connection was cleared or
reset for the following reasons.

Table 5-4 (Page 1

of 2). Error codes reported on the X'BF01’ operation

Error Code

Description

Cause

3200 3050

Network Restart in progress

Temporary condition; con-
nection is no longer active.

3200 3A0C

Close pending

The virtual circuit is being
closed.

3200 3A0D

Reset pending

The virtual circuit is in the
process of being reset by
either the remote system or
the network.

4200 3210

Reset packet transmitted

A Reset packet was trans-
mitted from the local system.

4200 3240

Time-out on reset

The clear request resulted in
an X.25 reset, which timed out

4600 3130

Reset indication was received

The virtual circuit received a
reset by either the remote
system or the network. Refer
to cause and diagnostic codes
for more information.

514 As/00 System Programmer’s Communications Interface Guide

Table 5-4 (Page 2 of 2). Error codes reported on the X’BF01’ operation

Error Code

Description

Cause

4600 3134

Clear indication was received

The virtual circuit was cleared
by either the remote system
or the network. Refer to
cause and diagnostic codes
for more information.

Table 5-5 shows the error codes that are valid for an application to receive as a
result of a call to QOLSEND with an operation code returned as X'0000'.

To an application, these error codes indicate that the connection was cleared or
reset for the following reasons.

Table 5-5. Error codes resulting from a X’0000" operation

Error Code

Description

Cause

3200 3050

Network Restart in progress

Temporary condition; con-
nection is no longer active.

3200 33C8

Data length not valid

The length of the packet is
not supported for this virtual
circuit.

3200 3A0C

Close pending

The virtual circuit is being
closed.

3200 3A0D

Reset pending

The virtual circuit is in the
process of being reset by
either the remote system or
the network.

4200 3284

Interrupt timed out

The local DTE sent an inter-
rupt packet. The response to
this packet was not received
within the time-out period,
and the connection has been
reset by the AS/400 system.

4600 3130

Reset indication was received

The virtual circuit received a
reset by either the remote
system or the network. Refer
to cause and diagnostic codes
for more information.

4600 3134

Clear indication was received

The virtual circuit was cleared
by either the remote system
or the network. Refer to
cause and diagnostic codes
for more information.

Common Errors

This section shows some of the common errors that an application programmer
may encounter. Some of these errors are detected by the APIs and reported to
the application by the unsuccessful return and reason codes returned on each
API. Other errors are program design errors, that the application programmer
must detect and correct. The errors are listed by category:

Chapter 5. Application Debugging 9-15

Parameter errors

¢ Switching use of PCEP and UCEP

e Switching use of timer handles

» Not encoding parameters if not used

» Operation code not in hexadecimal format
» Parameter not declared with proper length

User Space errors

* Not encoding reserved space for fields not used
¢ Not initializing user space fields as necessary.

The output user spaces can only be changed by the user-defined commu-
nications application. Operations are validated on each request. If there are
fields that the current operation does not use, they should be set to contain
zeros with X'00', to prevent a template error resulting from information on
the previous operation still being in the user space. Not resetting the indica-
tors in the output buffer descriptors on each operation and not zeroing out
fields before making a call request may result in template errors.

Data Queue errors
e Data queue not created
e Data queue created with different key length than specified in the parameter
list of QOLELINK

QOLRECYV errors

* Not checking the more data output parameter and issuing another call to
QOLRECV

¢ Not calling QOLSETF to set the filter to route inbound data to the application

* Using the wrong data unit descriptor for the data unit (each data unit has its
own descriptor)

QOLSEND errors

e After a call to QOLSEND with operation codes of X'B000', X'B100', or
X'BF00', the application should then call QRCVDTAQ and wait for an
incoming data entry. The success or failure of these operations are reported
through QOLRECV with operation codes of X'B001', X'B101' and X'BF01',

respectively.
¢ Using the wrong data unit descriptor for the data unit {(each data unit has its

own descriptor)

QOLELINK errors

* User space names not unique
* Data queue not created before program call
* Line description not created or incorrect prior to program call

QOLQLIND errors

* Parameter buffer not large enough

5-16 AS/400 System Programmer’s Communications Interface Guide

Chapter 6. Configuration and Additional Information

This chapter describes how to configure user-defined communications support
and the entries that user-defined communications support can send to the data
gqueue.

Configuring User-Defined Communications Support

Link

This section describes what needs to be configured before a user-defined com-
munications application program can use the user-defined communications APIs.
You can either use the system-supplied menus or the Control Language (CL)
commands to do this configuration.

A link allows a user-defined communications application program to use an X.25,
token-ring, or Ethernet communications line and is made up of the following
communications objects:

* an X.25, token-ring, or Ethernet line description
* a network controller description
* a network device description of type *USRDFN

It is only necessary to configure the line description since user-defined commu-
nications support will automatically configure a network controller and network
device description of type *USRDFN when the link is enabled. Additionally, the
line, controller, and device description will be automatically varied on if neces-
sary.

The following commands are used to create or change line descriptions:

* CRTLINX25 — Create Line Description (X.25)

* CHGLINX25 — Change Line Description (X.25)

* CRTLINTRN — Create Line Description (token-ring)
* CHGLINTRN — Change Line Description (token-ring)
e CRTLINETH — Create Line Description (Ethernet)

e CHGLINETH — Change Line Description (Ethernet)

The following commands may be used to create or change controller
descriptions:
e CRTCTLNET — Create Controller Description (Network)
e CHGCTLNET — Change Controller Description (Network)
The following commands may be used to create or change device descriptions:
* CRTDEVNET — Create Device Description (Network)
* CHGDEVNET — Change Device Description (Network)

See the 0S/400* Communications Configuration Reference for more information
on configuring communications.

© Copyright IBM Corp. 1991 6-1

Data Queue

A data queue is used by user-defined communications support to inform a user-
defined communications application program of some action to take or of an
activity that has been completed, and must be created before the link is enabled.

The size of each data queue entry must be large enough to accommodate the
user-defined communications support entries. Refer to “Data Queue Entries” for
more information on the entries that user-defined communications support can
send to the data queue.

The Create Data Queue (CRTDTAQ) command is used to create data queues.
See the CL Reference for more information on the CRTDTAQ command.

Data Queue Entries

General Format

This section describes the entries user-defined communications support can
send to the data queue.

User-defined communications support informs a user-defined communications
application program of some action to take or of an activity that has been com-
pleted by sending an entry to the data queue.

The length of each user-defined communications support entry will always be at
least 80 bytes. When using a keyed data queue, however, each entry may be as
large as 336 bytes, depending on the size of the key value supplied to the user-

defined communications support.

Figure 6-1 shows the general format of each user-defined communications
support entry.

Entry type | Entry ID Entry data Key
CHAR(10) CHAR(2) CHAR(68) CHAR(256)

Bytes 1-10 11-12 13-80 81-336

Figure 6-1. Data Queue Entry General Format

Entry type: This indicates the type of entry on the data queue and will be
*USRDFN for all user-defined communications support entries.

Entry ID: This uniquely identifies each entry within an entry type. User-defined
communications support has five entries defined:

« enable-complete entry {(entry ID = '00")

» disable-complete entry {(entry ID = "01')

e permanent-link-failure entry (entry ID = ’02’)
e incoming-data entry (entry ID = '03’)

* timer-expired entry (entry ID = '04")

Note: The entry type of *USRDFN and all associated entry 1Ds, either defined or
undefined, are reserved for the user-defined communications support. There-
fore, the user-defined communications application program should not define
entries using this entry type.

6-2 AS/400 System Programmer’s Communications Interface Guide

Entry data: This data is useful to the user-defined communications application
program and varies according to the entry ID.

Key: When using a keyed data queue, this is the key value supplied to the user-
defined communications support.

Enable-Complete Entry
The enable-complete entry is sent to the data queue when the enable link opera-
tion has completed. This entry will only be sent after the QOLELINK program
returns to the user-defined communications application program with a suc-
cessful return and reason code.

Note: The QOLELINK program only initiates the enabling of the link. The user-
defined communications application program must wait for the enable-complete
entry before attempting to perform input or output on the link.

Figure 6-2 shows the format of the enable-complete entry.

*USRDFN '00' | Communications handle | Status | Resrvd | Key

Bytes 1-10 11-12 13-22 23 24-80 81-336

Figure 6-2. Enable-Complete Entry

Communications handle: The name of the link that is being enabled. This was
supplied by the user-defined communications application program when the
QOLELINK program was called.

Status: This indicates the outcome of the enable link operation. A value of zero
indicates the enable link operation was successful and 1/0 is now possible on
this link. A value of one indicates the enable link operation was not successful
(the job log will contain messages indicating the reason). The user-defined com-
munications support will disable the link when the enable link operation com-
pletes unsuccessfully and the disable-complete entry will not be sent to the data
queue.

Key: The key value associated with the enable-complete entry when using a
keyed data queue. This was supplied by the user-defined communications appli-
cation program when the QOLELINK program was called. When using a non-
keyed data queue, indicated by supplying a key length of zero to the QOLELINK
program, this field would not be present.

Disable-Complete Entry

The disable-complete entry is sent to the data queue when a link has been suc-
cessfully disabled. This entry will always be the last entry sent by the user--
defined communications support on this link and, therefore, provides a way for
the user-defined communications application program to remove any enable-
complete, incoming-data, or permanent-link-failure entries previously sent to the
data queue.

1 User-defined communications support does not associate timers with links. Therefore, it is possible for a timer-expired entry
to be sent to the data queue after the link is disabled. The user-defined communications application program is responsible
for handling this.

Chapter 6. Configuration and Additional Information ~ 6~3

Figure 6-3 shows the format of the disable-complete entry.

*USRDFN 'e1' | Communications handle | Reserved | Key

Bytes 1-10 11-12 13-22 23-80 81-336

Figure 6-3. Disable-Complete Entry

Communications handle: The name of the link that has been disabled. This was
supplied by the user-defined communications application program when the
QOLELINK program was called to enable the link.

Key: The key value associated with the disable-complete entry, when using a
keyed data queue. This was supplied by the user-defined communications appli-
cation program when the QOLELINK program was called to enable the link.
When using a nonkeyed data queue, indicated by supplying a key length of zero
to the QOLELINK program, this field would not be present.

Permanent-Link-Failure Entry
The permanent-link-failure entry is sent to the data queue when error recovery
has been canceled on a link. You must disable and enable the link to recover.

Figure 6-4 shows the format of the permanent-link-failure entry.

*USRDFN '92' | Communications handle | Reserved | Key

Bytes 1-10 11-12 13-22 23-80 81-336

Figure 6-4. Permanent-Link-Failure Entry

Communications handle: The name of the link on which the failure has
occurred. This was supplied by the user-defined communications application
program when the QOLELINK program was called to enable the link.

Key: The key value associated with the permanent-link-failure entry, when using
a keyed data queue. This was supplied by the user-defined communications
application program when the QOLELINK program was called to enable the link.
When using a nonkeyed data queue, indicated by supplying a key length of zero
to the QOLELINK program, this field would not be present.

Incoming-Data Entry
The incoming-data entry is sent to the data queue when the user-defined com-
munications support has data for the user-defined communications application
program to receive. When this entry is received, the user-defined communica-
tions application program should call the QOLRECV program to pick up the data.

Note: Another incoming-data entry will not be sent to the data queue until the
user-defined communications application program picks up all the data from the
user-defined communications support. This is indicated by the data available
parameter on the call to the QOLRECYV program.

Figure 6-5 on page 6-5 shows the format of the incoming-data entry.

6-4 AS/400 System Programmer’s Communications Interface Guide

*USRDFN ‘03' | Communications handle | Reserved | Key

Bytes 1-10 11-12 13-22 23-80 81-336

Figure 6-5. Incoming-Data Entry

Communications handle; The name of the link on which the data has come in.
This was supplied by the user-defined communications application program
when the QOLELINK program was called to enable the link.

Key: The key value associated with the incoming-data entry, when using a
keyed data queue. This was supplied by the user-defined communications appli-
cation program when the QOLELINK program was called to enable the link.
When using a nonkeyed data queue, indicated by supplying a key length of zero
to the QOLELINK program, this field would not be present.

Timer-Expired Entry

The timer-expired entry is sent to the data queue when a timer, previously set by
a user-defined communications application program, expires.

Figure 6-6 shows the format of the timer-expired entry.

*USRDFN '04' | Timer handle | User data | Key

Bytes 1-10 11-12 13-20 21-80 81-336

Figure 6-6. Timer-Expired Entry

Timer handle: The name of the expired timer. This was returned to the user-
defined communications application program when the QOLTIMER program was
called to set the timer.

User data: The data associated with the expired timer. This data was supplied
by the user-defined communications application program when the QOLTIMER
program was called to set the timer.

Key: The key value associated with the timer-expired entry, when using a keyed
data queue. This was supplied by the user-defined communications application
program when the QOLTIMER program was called to set the timer. When using
a nonkeyed data queue, indicated by supplying a key length of zero to the
QOLTIMER program, this field would not be present.

Chapter 6. Configuration and Additional Information 6-5

6-6 AS/400 System Programmer’s Communications Interface Guide

Part 2. Virtual Terminal Application Programming Interfaces

Copyright IBM Corp. 1991

AS/400 System Programmer’s Communications Interface Guide

Chapter 7. Introduction to Virtual Terminal APIs

The purpose of this chapter is to provide information for using the virtual ter-
minal (VT) APIs. The VT APIs allow an AS/400 user-written program to interact
with an AS/400 application program which is performing work station input and
output (I/0). This interaction is performed using a virtual terminal.

A virtual terminal is a device that does not have hardware associated with it. It
is used to form a connection between a user-written program representing a
physical work station (possibly on a remote system) and AS/400 applications.
The virtual terminal is managed by the OS/400. Work station 1/0 performed by
an AS/400 application is directed to the virtual terminal. The VT APIs allow
another AS/400 application (called a server program) to work with the data asso-
ciated with the virtual terminal.

The server program generally runs on behalf of (or in conjunction with) another
program called a client program (either on the same AS/400 system or on some
other remote system). In general, the server program and client program allow
a work station to be supported as if the work station were connected locally.

The client and server programs may reside on the same AS/400 system or may
be distributed between two different systems. Figure 7-1 shows a model for
such a distributed implementation between a PS/2* work station and an AS/400
system. This implementation is similar to how PC Support Work Station Function
is supported for the AS/400 system.

Implementation of Distributed 5250 Emulation Model

r VT APIs

Keyboard VT VT Virtual AS/400
Client Link Server Terminal Application
Display Program|{ — |Program

PS/2 T
Work Station ~—T Ti AS/400 System

Figure 7-1. Example Virtual Terminal Client/Server Mode/

The work station in the model in Figure 7-1 is a personal computer such as the
IBM PS/2.
The client program on this PS/2 work station does the following:

* accepts data from the server program and displays the data on the PS/2
display

e accepts data from the PS/2 keyboard and sends the data to the server
program

* converts the data from the format required by the PS/2 display and keyboard
to the format required by the server program (5250 data stream)

The link between the client program and server program uses DOS and 0S/400
communications support. This may be LUB6.2, TCP/IP, or some other communica-
tions protocol.

© Copyright IBM Corp. 1991 71

The server program provides the work station support of the server implementa-
tion. The server program runs on an AS/400 system and can be written in any
AS/400 high-level language (HLL) such as C/400. The server program writes
data to the virtual terminal and reads data from the virtual terminal using the VT
APls. The virtual terminal data is always in a 5250 data stream format.

The VT APls provide an interface between the server program and the virtual
terminal supported by 0S/400.

The virtual terminal represents the 0S/400 link between the server program and
the AS/400 application. The virtual terminal is managed entirely by the OS/400.

The AS/400 application is an 0S/400 or user-written application that performs a
standard data transfer to an 0S/400 work station. This application may be
written in any 0S/400 HLL.

Table 7-1 lists the available VT APIs. Refer to Chapter 10, “Virtual Terminal
APls” for additional information concerning these APIs.

Table 7-1. VT AP! Functions

APl Name Description

QTVOPNVT | Open Virtual Terminal Path.

Opens a path to a virtual terminal, allowing a server program to
interact with an AS/400 application.

QTVRDVT Read Virtual Terminal Data.

Reads data from the virtual terminal to the server program’s data
buffer.

QTVWRTVT | Write Virtual Terminal Data

Writes data from the server program’s data buffer to the virtual ter-
minal.

QTVSNDRQ | Send Virtual Terminal Request to 0S/400.

Sends a request to 0S/400 for a particular function to be performed.

QTVCLOVT | Close Virtual Terminal Device.

Closes one or all open paths to virtual terminals.

7-2 As/400 System Programmer’s Communications Interface Guide

Chapter 8. Getting ready for using the VT APIs

To get ready for using the VT APIs, perform the following steps:

1. Set the number of Automatically Created Virtual Terminals (QAUTOVRT)
2. Set the Limit Security Officer (QLMTSECOFR) system value
3. Create User Profiles

This chapter also discusses how to create your own virtual controllers and
devices, and programming considerations when using the VT APIs.

Step 1 - Setting the Number of Automatically Created Virtual Terminals

Virtual terminals are used by the OS/400 to allow the server program to interact
by sending and receiving data with AS/400 applications. The OS/400 will auto-
matically select (and create if necessary) these virtual terminals for you.

You must allow OS/400 to configure the required virtual controllers and terminals
automatically. Controllers coordinate and control the operation of one or more
input/output terminals (such as work stations) and synchronize the operation of
such terminals with the operation of the system as a whole. The QAUTOVRT
system value specifies the maximum number of terminals that will be automat-
ically configured by the system. Use the Change System Value (CHGSYSVAL)
command to change the value of the QAUTOVRT system value. For example,
entering the following command string changes the number of virtual terminals

that can be allocated on a system to 50:
) system to 50:

CHGSYSVAL SYSVAL (QAUTOVRT) VALUE(56)

To determine and set the maximum number of users you want signed on to the
AS/400 system at any time do the following:

¢ Set the QAUTOVRT value to 9999, the maximum value allowed.

* Let your clients use the AS/400 system until you decide that the number of
virtual terminals created is sufficient for normal system operation.

» Use the Work With Configuration Status (WRKCFGSTS) o determine the
number of work stations configured.

¢ Change the QAUTOVRT value from 9999 to the number of virtual terminals
you require for normal operation.

If you have never allowed virtual terminals to be configured automatically on
your system, the QAUTOVRT value is 0. You will not be able to use the VT APIs
because 0S/400 will not be able to create more than the specified QAUTOVRT
work stations (0). If you change the QAUTOVRT value to 10, the next virtual ter-
minal path opened causes the 0S/400 to create a virtual terminal. This virtual
terminal is created because the number of virtual terminals on the controller (0)
is less than the number of specified in the QAUTOVRT value (10). Even if you
change the specified number to 0 again, the next virtual terminal opened may
succeed if a virtual terminal exists that is not being used. If a virtual terminal
does not exist or is in use, OS/400 will not create a new virtual terminal because
the number of virtual terminals currently existing is greater than or equal to the
specified QAUTOVRT value. If the number of virtual terminals currently existing
is greater than or equal to the QAUTOVRT value, the message CPF8940, “Cannot
automatically select virtual device”, will be sent to the system operator message

© Copyright IBM Corp. 1991 8-1

gueue. You must either try again when a virtual description becomes available
or increase the QAUTOVRT value.

The OS/400 uses the following conventions for naming virtual controllers and
work stations:

e Virtual controllers are named QPACTLnn.
e Virtual terminal descriptions are named QPADEVxxxx.

The following must be considered when the 0S/400 automatically configures
work stations.

* The 0S/400 does not delete virtual terminals, even if the number of work
stations attached to virtual controllers that are automatically configured,
exceeds the QAUTOVRT limit.

If you want the extra work stations deleted, you must manually delete them.

+ 08/400 allows a maximum of 250 virtual terminals on the QPACTLO1 before it
creates QPACTLO2. This value is usually adequate for most users. If you
delete work stations to enforce a smaller QAUTOVRT value, begin by
deleting the work stations from the controller with the highest QPACTLnn
value.

Note: QAUTOVRT is a system value that controls the number of all automat-
ically configured virtual terminals for the AS/400 system. Virtual ter-
minals are used by TELNET, 5250 display station pass-through, and all
other programs using the VT APlIs.

Security Considerations
The number of sign-on attempts aliowed increases if virtuai terminais are auto-
matically configured. The number of sign-on attempts is equal to the number of
system sign-on attempts allowed, multiplied by the number of virtual terminals
that can be created. The number of system sign-on attempts allowed is defined
by the QMAXSIGN system value. The number of virtual terminals that can be
created is defined by the QAUTOVRT system value.

Step 2 - Setting the Limit Security Officer (QLMTSECOFR) Value

The OS/400 supports the Limit Security Officer (QLMTSECOFR) system value,
which limits the devices the security officer can sign on to. The security officer
is assigned to control all of the security authorizations provided with the AS/400
system. If the QLMTSECOFR value is greater than zero, the security officer must
be authorized to use the virtual device descriptions. However, when this value
is 0, the system does not limit the devices the security officer can use to sign on
to.

On AS/400 systems with a QSECURITY value of 30, a.user with Security Officer
Authority (*ALLOBJ) must be authorized to use work stations before the system
allows the user to use those work stations. For example, for each display work
station that a security officer wants to sign on to (local, remote, or virtual), the
user must specify the following with the Grant Object Authority (GRTOBJAUT)
command:

GRTOBJAUT 0BJ(display-name) OBJTYPE(*DEVD) AUT(*CHANGE) USER(QSECOFR)

This procedure is very important because using the VT APls automatically con-
figures virtual terminals (devices). If the QLMTSECOFR value is set to 0, all

8-2 As/400 System Programmer’s Communications Interface Guide

virtual terminals automatically configured when using the VT APIs can be used
by the security officer. If you set the QLMTSECOFR value to 1, your security
officer will not be able to use the virtual terminals unless you grant object
authority to the security officer for that virtual terminal. Note that the automatic
configuration support can delete and recreate the virtual terminal. If this occurs,
authority must be granted to the security officer each time the virtual terminal is
created. Automatic configuration is a function that names and creates the
descriptions of network devices and controllers attached to a line.

On the AS/400 system, you should create one or more user profiles for users of
the virtual terminal supported by the client and server programs. The default
user profile is *SYS. The following example shows a sample user profile:

CRTUSRPRF USRPRF(CLERK1) PASSWORD (unique-password)
JOBD (CLERKLIB/CLERKL1)
TEXT('User profile for one group of clerks')

Creating Your Own Virtual Controllers and Devices

You can create your own virtual controllers and devices (terminals); however,
you must use the same naming conventions as the automatic controller and
device creation support. You may want to create the virtual terminal
descriptions to control the number of sign-on attempts possible by not allowing
automatic configuration of virtual terminals (which allows additional sign-on
Hanmnto A Anme) Dafavr+a “Cannev NAanacindavatinna” An nana 0 N fav nrdlA

dllclllplb U ULLul). ncict w ucuunly “UTIDIUTIauliviio Ul paytt 0-<c 1ulI aaai-

tional information.

If you do not want to use automatically created descriptions, do the following:
e To create your own descriptions

— To create a controller description for a virtual terminal, use the Create
Controller Description for Virtual Work Station (CRTCTLVWS) command

CRTCTLVWS CTLD(QPACTLO1) TEXT('Virtual Controller for virtual terminals')

Note: You must use the 0S/400 naming convention, QPACTLnn, for
naming virtual controllers, where nn is a decimal number starting
at 01.

— To create a virtual terminal, use the Create Terminal Display
(CRTDEVDSP) command as follows:

CRTDEVDSP DEVD(QPADEVO0O1) DEVCLS(*VRT) TYPE(5251) MODEL(11)
CTL(QPACTLO1) TEXT('24 X 80 Monochrome Display for Server Program')

— 08/400 will automatically vary on the controller and terminal that you
have created. You must use the 0OS/400 naming convention,
QPADEVnnnn, for naming virtual device descriptions.

* After creating the descriptions, you must authorize the server program to
use them. Use the Grant Object Authority (GRTOBJAUT) command to
authorize the user profile used by the server program to the descriptions
created earlier. This can be done with the following commands:

GRTOBJAUT OBJ(QPACTLO1) OBJTYPE(*CTLD) AUT(*CHANGE) USER(user profile)
GRTOBJAUT 0BJ(QPADEVEG01) OBJTYPE(*DEVD) AUT(*CHANGE) USER(user_profile)

Chapter 8. Getting ready for using the VT APIs 8-3

* You may want to prevent virtual terminals from being created automatically.
To do this, set the QAUTOVRT system value to 0 as follows:

CHGSYSVAL SYSVAL(QAUTOVRT) VALUE(0)
Refer to “Step 1 - Setting the Number of Automatically Created Virtual
Terminals” on page 8-1 for additional information.

Note: Changing this system value will affect other AS/400 products and pro-
grams requiring automatic configuration. This includes TELNET, 5250
display station pass-through, and other programs using the VT APlIs.

Developing Server and Client Programs
The following should be considered when developing client and server pro-
grams:

* The client program should be able to:

— Interrupt the server program
— Check the server program’s status
— Discard data from the AS/400 application

* The user should be able to configure a time-out to be used by the client
program while waiting for screens from the server program.

* Pressing the Print key on the work station should create a file to be printed
at either the work station or the AS/400 printer.

8-4 As/400 System Programmer’s Communications Interface Guide

Chapter 9. Before Using VT APIs

This chapter provides information that you will need when developing AS/400
programs that use the VT APls. Chapter 10, “Virtual Terminal APIs,” contains
the syntax of the VT APls called QTVOPNVT, QTVRDVT, QTVWRTVT, QTVSNDRQ,
and QTVCLOVT.

Work Station Types

A server program can select from several different types of work stations. Refer
to “Supported Work Station Types and Models” on page 10-3 for a list of the
types of the work stations supported. A work station type must be specified
when a virtual terminal device is opened.

Virtual Terminal Data

The VT APIs allow a server program to read and write virtual terminal data. This
data is in a 5250 data stream format. Refer to the 5250 Functions Reference
Manual, SA21-9247, for more information on 5250 data streams.

Data Queues

Data queues are used by the 0S/400 to send data to the server program. The

P [T [Ty 1 RV arm fAF iIntarnraroce Ao
adid queue Cdil disO bE useu Dy Lie seiver proyirdin 101 Hierproctess cutninu-

nications with other AS/400 programs and APIs.

The data queue must be created by the user of VT APIs before a path is opened
to a virtual terminal. Refer to the CL Reference for details on how to create and
delete data queues. Refer to QTVOPNVT VT API for information on how a server
program specifies the name of the data queue to be used.

The OS/400 communicates special events to the server program using the data
queue. The information is provided by the AS/400 system using a data queue
entry.
The following events result in data queue entries being sent.

* When data from an AS/400 application is received at a virtual terminal.

¢ The virtual terminal is being closed by the OS/400. This can occur if an

AS/400 application’s job is canceled.

When using VT APIs, data queues are used as follows:

1. The data queue is created by the user.

2. A path to a virtual terminal is opened by calling QTVOPNVT.

3. The server program should attempt to remove an entry from a queue by
calling QRCVDTAQ (Receive Data Queue). Refer to the CL Programmer’s
Guide for information on how to call QRCVDTAQ.

4. If an entry is received indicating that data is available, the server program
should read the data from the virtual terminal by calling QTVRDVT.

© Copyright IBM Corp. 1991 9-1

Table 9-1 shows the structure of OS/400 data queue entries sent to the data
queue when using the VT APIs. All data queue entries have the same format.

Table 9-1. Format of 0OS/400 data queues associated with the VT APIs.

Name Type Description
Entry_Type CHAR(10) Always set by 08/400 to *VRTTRM.
Entry_ID CHAR(2) Entry ID associated with entry. Valid values for

the 2 characters in this parameter are:

1. The 0S/400 is closing (terminating) the
session with the virtual terminal. The server
program should perform a close to indicate
that the server program is done using the
virtual terminal.

2. An AS/400 application has sent data to the
virtual terminal. Refer to the QTVRDVT API
for information on how to read the data.

Note: All other values are reserved by
AS/400. ’

VTHandle CHAR(16) The virtual terminal handle associated with the
virtual terminal communications path previously
opened by calling QTVOPNVT. Refer to the
QTVOPNVT VT for additional details.

CHAR(52) Reserved

Key CHAR(*) Key value specified when the virtual terminal
communications path was opened, refer to
QTVOPNVT API for additional details on speci-
fying the key value. The Key vaiue can be used
for retrieving data queues by key.

AS/400 Job Information

Several AS/400 jobs are involved when using VT APIs. The jobs can be classi-
fied into two groups: the server program jobs and the application jobs. Each
group may consist of one or more jobs, depending on the implementation of the
server program and the AS/400 applications being run.

The server program may be either implemented as a single job or more than
one job, depending on the number of work stations to be supported per job. For
example, each work station can be supported by a single job by routing all
requests from the work station client program to a particular server program job.

The AS/400 application runs in its own job but there may be more than one
application being run and, therefore, more than one job.

AS/400 Subsystem Information

The server program should be run in the same subsystem that other server pro-
grams are running in. A separate subsystem is usually best for all server pro-
grams for controlling resource use, such as main storage, and for allowing
performance tuning, such as the number of page faults. Generally, AS/400 appli-
cations run in subsystem QBASE.

9-2 AS/400 System Programmer’s Communications Interface Guide

You may need to use the Add a Work Station Entry (ADDWSE) command to add a
work station entry to the subsystem description under which you want the server
program to run. Note that if the subsystem was created with the system

defaults, this will not have to be done.

Before a work station is allowed to sign-on, it must be defined to the subsystem.
The work station in this case is the virtual terminal device (QPADEVnnnn) auto-
matically created by 0S/400. The work station name, work station type, or *ALL
must be specified in the subsystem description. Use the Display Subsystem
Description (DSPSBSD) command to see the list of work station entries defined
to a subsystem. The following command could be used to add all work station
types to a subsystem named QBASE:

ADDWSE SBSD(QBASE) WRKSTNTYPE(*ALL)

The ADDWSE command is only valid when the subsystem description is not
active.

Chapter 9. Before Using VT APIs 9-3

9-4 As/400 System Programmer’s Communications Interface Guide

Chapter 10. Virtual Terminal APIs

This chapter explains the details of using the following VT APIs:

QTVOPNVT Open Virtual Terminal Path
QTVRDVT Read from Virtual Terminal
QTVWRTVT Write to Virtual Terminal
QTVSNDRQ Send Request for OS/400 Function
QTVCLOVT Close Virtual Terminal Path

Open Virtual Terminal Path APl (QTVOPNVT)

The Open Virtual Terminal Path API (QTVOPNVT) opens a path to a virtual ter-
minal, allowing a server program to interact with an 0S/400 application. The
virtual terminal path remains open until it is explicitly closed or the job is ended.

When you call QTVOPNVT, the operating system selects or automatically config-
ures a virtual terminal for you and indicates that the device is logically turned
on. The operating system then creates a sign-on display at the virtual terminal
and sends a message to the specified data queue to signal the server program
that data is available.

The QTVOPNVT API has these attributes:

Library Authority *USE
User Queue Authority *CHANGE
User Queue Lock *EXCLRD

Error Messages
CPF87FA E Character identifier not valid
CPF87FO E Virtual terminal type value &1 not valid
CPF87F1 E Queue key length &1 not valid
CPF87F2 E Virtual terminal handle &1 not valid
CPF87F7 E Parameter value &1 not valid
CPF87F8 E Unexpected internal system error

occurred in program &1

CPF87FS E Keyboard language type &1 not valid

The QTVOPNVT API has these parameters:

QTVOPNVT: Required Parameters

1 | Virtual terminal handle | OUTPUT | cHAR(16)

A reference code created by the operating system to identify this open virtual
terminal path in later calls to other virtual terminal APls.

2 | Keyboard language type] INPUT | CHAR®)

The keyboard language type for the virtual terminal. To use the system value,
specify blanks for this parameter. For a list of other valid values, see the
Create Device Description (CRTDEVDSP) command in the CL Reference. For
details about supported keyboard languages, see the National Language
Support Planning Guide.

© Copyright IBM Corp. 1991 10-1

3 Character set INPUT BINARY(4)

The graphic character set for the virtual terminal. Valid values are a specific
graphic character set number and these special values:

0 The character set system value is used.
-1 The keyboard language type is used to select the appropriate character
set.

For details about the graphic character sets you can specify, see the Nationa/
Language Support Planning Guide.

4 Code page INPUT BINARY(4)

The code page for the virtual terminal. For details about the code pages you
can specify, see the National Language Support Planning Guide. If parameter
3 is 0 or -1, you do not have to specify parameter 4. When you use 0 for
parameter 3, the system value is used for parameter 4. When you use -1 for
parameter 3, the code page value is derived from parameter 2 (keyboard lan-
guage type).
Note: The code-page system value is obtained from the QCVRID system
value.

5 Work station type INPUT BINARY(4)

The type of work station to use. Valid values are 1 through 10; refer to “Sup- ‘
ported Work Station Types and Models” on page 10-3 for an explanation of
the values.

Other work station types and models are supported. You can specify these by
determining their equivalents in the list above. For a more detailed list of
work station types and equivalents, see “Supported Work Station Types and
Models” on page 10-3.

If a virtual terminal description does not yet exist for the work station type
specified, the operating system tries to configure the work station automat-
ically. Automatic configuration is controlled by the QAUTOVRT system value,
which specifies the number of virtual terminals that the operating system can
configure automatically. To change the QAUTOVRT value, use the Change
System Value (CHGSYSVAL) command.

Note: 5250 display station pass-through and TCP/IP TELNET use the
QAUTOVRT system value.

6 Data queue name and library INPUT CHAR(20)

The name and library of the data queue used by the application program to
receive data from the operating system asynchronously. The first 10 bytes
give the data queue name, and the second 10 bytes give the library name.

Allowable special values are:

*CURLIB The job’s current library

*LIBL The library list

7 | Key value | INPUT | cHAR()
The key value to use for the 0S/400 data queue.

8 | Key value length | INPUT | BINARY(3)

The length of the key value. Valid values are 0 through 256. If you specify 0,
no key is used for data queue entries.

9 | Error code | 1o | cHAR()

The structure in which to return error information. For the format of the struc-
ture, see “Error Code Parameter” on page 10-11.

10-2 As/400 System Programmer’s Communications Interface Guide

Supported Work Station Types and Models
This table details the values you can specify for the QTVOPNVT API’s work
station type parameter:

Work Station Equivalent
Type and Type and
Value Model Model Description
1 5251 11 24 x 80 monochrome display.
2 5291 1 5291 2 24 x 80 monochrome display.
3 5292 2 24 x 80 color graphics display.
This type is also emulated by
a graphics work station
feature.
4 5555 BO1 5555 EO1 24 x 80 monochrome double-
byte character set (DBCS)
display. This type is emulated
by a monochrome work station
feature that supports a DBCS
display.
5 3196 A1 3196 A2 24 x 80 monochrome display.
3196 B1 This type is emulated by a
3196 B2 monochrome work station
3476 EA feature. This is what the ASCI
devices emulate.
6 3179 2 3197 C1 24 x 80 color display. This
3197 C2 type is emulated by a color
3476 EC work station feature.
5292 1

7 3180 2 3197 D1 27 x 132 monochrome display.
3197 D2
3197 W1
3197 W2

8 3477 FC 27 x 132 wide-screen color
display.

9 3477 FG 3477 FA 27 x 132 wide-screen

3477 FD monochrome display.
3477 FW
3477 FE

10 5555 C01 5555 FO1 24 x 80 color double-byte
character set (DBCS) display.
This type is emulated by a
color work station feature that
supports a DBCS display.

Note:

All 5250 work stations, except 5555 B01, can operate as 5251 11 work stations.
Selecting double-byte character set (DBCS) work stations requires the AS/400
primary language to be one of the DBCS national language versions (NLVs).

Chapter 10. Virtual Terminal APIs 10-3

Read from Virtual Terminal APl (QTVRDVT)

The Read from Virtual Terminal APl, QTVRDVT, reads data from the virtual ter-
minal into the server program’s data buffer. Your application should read data
only if it has received an asynchronous notification message on the data queue,
or if the more data flag was set on a previous read operation. The data received
is in 5250 data stream format. “

Only one full-screen display of data can be received at a time. If the data buffer
is too small, partial displays are received and the more data flag of the
QTVRDVT API's read information parameter is set to 1.

Before working with 5250 data streams, be sure to see the IBM 5250 Information
Display System Functions Reference Manual.

The following error messages are issued by the QTVRDVT API:

CPF87F2 E Virtual terminal handle &1 not valid

CPF87F3 E Data buffer length &1 not valid

CPF87F7 E Parameter value &1 not valid

CPF87F8 E Unexpected internal system error occurred in program &1

The QTVRDVT API has these parameters:

QTVRDVT: Required Parameters

1 Virtual terminal handle INPUT CHAR(16)

lI tarminal math Araasta anar

The fminai paw, G eated b'y' the oper-

S

ating system with the Open Virtual Terminal Path API, QTVOPNVT.

afaranra nnde for th n i
eierence coGe 1or t V

réiin
niuai Lo

10-4 AS/400 System Programmer’s Communications Interface Guide

Read information OUTPUT CHAR(10)

Information about the read operation. The characters and their meanings are:

1 The operation code, which gives the server program additional informa-
tion about 0S/400 status and what is expected of the server program.
Valid values for this parameter are:

Invite

Output only

Put/get

Save display

Restore display

Read immediate

Read display

Cancel invite

Turn on message light
Turn off message light

OWD OO G HWN =

For detailed descriptions of these codes, see “Read Operation Codes”
on page 10-6.

2 More data flag. Valid values for this parameter are:

0 There is no more data.

1 More data is available. Issue the read operation again to receive
the additional data. This flag is set if the buffer specified on input is
not large enough to hold all of the data received from the virtual
terminal.

3 Key flag. Valid character values for this parameter are:

0 The Enter key was pressed.
1 The System Request key was pressed.

4-10 Reserved.

Data buffer OUTPUT CHAR(*)

The server program’s buffer for receiving data from the virtual terminal. The
data is a 5250 data stream.

The QTVRDVT API does not lock the data buffer. Thus, other applications
should not use the buffer while the APl is using it.

The data buffer should be large enough to hold the largest display of data
expected. If it is not large enough, the more data flag of the read information
parameter is set to 1. Additional read requests must be performed, until all
the remaining data is received and the more data flag is set back to 0.

Number of bytes to read | INpUT | BINARY(4)

The number of bytes to read from the data buffer. This number must be
smaller than or equal to the size of the data buffer.

Data received | outpPuT | BINARY(4)

The amount of data received from the virtual terminal in bytes. If no data is
received from the virtual terminal, 0 is returned. Some read operations do not
return any data.

For graphic work stations, a maximum of 24 576 (24K) bytes of data can be
returned.

Error code 1/0 CHAR(*)

The structure in which to return error information. For the format of the struc-
ture, see “Error Code Parameter” on page 10-11.

Chapter 10. Virtual Terminal APIs 10-5

Read Operation Codes

The tabie
request.

beiow describes the operation codes that can be returned on a read

Value

Response Name

Description

1

Invite

No data is returned from this read request. The oper-
ating system and the application are ready to receive
data. The server program is expected to follow this
with a write operation when data becomes available

from the client program.

Output only

This read request returned some data. The server
program should send the data to the client program.
However, the operating system is not ready to receive
data from the server program. The server program
should not request any data from the client program
yet. This response usually occurs because an applica-
tion is performing several put operations to the virtual
terminal device. After the last put operation by the
application, a put/get operation code is usually
returned on the read operation.

Put/get

Data is returned from this read request and should be
sent by the server program to the client program. The
operating system is ready to receive data from the
server program. The server program should wait for
data from the client program.

Save display

No data is returned from this read request. The oper-
ating system expects the server program to obtain the
data from the current dispiay and write the data to the
virtual terminal. The operating system saves the
display for later use, such as returning the display to
the server program. The server program must indi-
cate a save-display response on the write operation
and send the saved display as data (that is, the saved
display must be in the data buffer).

Restore display

The data returned is a previously saved display. The
server program should send the data to the client
program.

Read immediate

No data is returned from this read request. The oper-
ating system expects the server program to write data
to the virtual terminal. Only data from input fields
should be written.

Read display

No data is returned from this read request. The oper-
ating system expects the server program to write data
to the virtual terminal. The current display should be

written.

Cancel invite

No data is returned from this read request. The oper-
ating system expects the server program to signal the
client program to cancel the outstanding invite opera-
tion. When it is canceled, the server program must
perform a write operation to the virtual terminal and
indicate a cancel invite response. Because the
response has no data associated with it, the number
of bytes to write must be set to 0 for the write opera-
tion.

10-6 AS/400 System Programmer’s Communications Interface Guide

Value Response Name Description
B Turn on message No data is returned from this read request. A
light message has been received, and the user should be
notified. The server program should signal the client -
program to turn on a display message indicator light
or other indicator. ‘
C Turn off No data is returned from this read request. The

message light

display message light or other indicator should be set
off.

Chapter 10. Virtual Terminal APIs 10-7

Write to Virtual Terminal APl (QTVWRTVT)

The Write to Virtual Terminal APl, QTVWRTVT, writes data from a server
program’s data buffer to a virtual terminal. You can send one display to the
virtual terminal during each write operation. You cannot send partial or multiple

displays.

The following error messages are issued by the QTVWRTVT API:

CPF87D4 E Data sent exceeded the corresponding I/0 request
CPF87F2 E Virtual terminal handle &1 not valid

CPF87F3 E Data buffer length &1 not valid

CPF87F4 E Key flag &1 not valid

CPF87F5 E Operation code response &1 not valid

CPF87F7 E Parameter value &1 not valid

CPF87F8 E Unexpected internal system error occurred in program &1

The QTVWRTVT API has these parameters:

QTVWRTVT: Required Parameters

1 Virtual terminal handle I INPUT I CHAR(16)

The reference code for the open virtual terminal path, created with the Open
Virtual Terminal Path APl, QTVOPNVT.

2 Write information l INPUT I CHAR(10)

Information about the write operation. The information given in each char-
acter is as follows:

1 Key flag. Valid values are:
0 The Enter key was pressed.

1 The System Request key was pressed. The next read operation
returns the AS/400 System Request menu.

2 The Attention key was pressed. In this case, the number of bytes
to write must be 0.

3 The Test Request key was pressed.
4 The Help-in-Error key was pressed.

2 Operation code. This parameter describes the type of write operation
to perform. Valid values and their meanings are:
blank Put/get
2 Output only
3 Put/get
4 Save display
A Cancel invite
For detailed descriptions of these codes, see “Write Operation Codes”
on page 10-9.
3—10 Reserved. These characters must be blank.
3 Data buffer INPUT CHAR(*)
The server program’s buffer containing the data to send to the virtual ter-
minal.

The QTVWRTVT API does not lock the data buffer. Thus, other applications
should not use the buffer while the API is using it.

10-8 AS/400 System Programmer’s Communications Interface Guide

4 Number of bytes to write INPUT BINARY(4)

The number of bytes to write. This number must be smaller than or equal to
the size of the data buffer. Valid range of numbers is 0 through 24K. This
parameter must be 0 if character 1 of the write information parameter is 2.

Some write operations do not write data.
S Error code 110 CHAR(*)

The structure in which to return error information. For the format of the struc-
ture, see “Error Code Parameter” on page 10-11.

Write Operation Codes
The table below describes the operation codes that can be used in the write
information parameter.

Value Name Description
blank Put/get Data is being sent to the virtual terminal. The virtual
terminal server program is ready for input.
2 Output only This write operation is in response to a read request
that returned an output-only read operation code.
Put/get See the description above.
4 Save display This write operation is in response to a read request

that returned a save display read operation code. No
data is associated with this write operation; thus, the
data buffer length must be set to 0.

A Cancel invite This write operation is in response to a read request

that returned a cancel invite read operation code. No
data is associated with this write operation; thus, the

data buffer length must be set to 0.

Chapter 10. Virtual Terminal APIs 10-9

Send Request for 0S/400 Function APl (QTVSNDRQ)

The Send Request for 0S/400 Function API, QTVSNDRQ, sends a request to the
operating system to perform a particular function. The requests supported are
described in the parameter table below.

The following error messages are issued by the QTVSNDRQ API:

CPF87F2 E Virtual terminal handle &1 not valid

CPF87F6 E Request value &1 not valid

CPF87F7 E Parameter value &1 not valid

CPF87F8 E Unexpected internal system error occurred in program &1

The QTVSNDRQ API has these parameters:

QTVSNDRQ: Required Parameters

1 | Virtual terminal handle J INPUT | CHAR(16)

The reference code for the open virtual terminal path, created with the Open
Virtual Terminal Path APl, QTVOPNVT.

2 | Request | INPUT | BINARY(4)
The request to be processed by the operating system. Valid binary values
are:

1 Cancel Previous Request: Allows the server program to cancel the pre-
vious 0S/400 request. This is similar to selecting option 2 on the AS/400
System Request menu.

2 Send Break Message: Causes the operating system to issue a break
message to the virtual terminal. You can use this to determine whether
the virtual terminal is still active.

3 Error code 170 CHAR(*)

The structure in which to return error information. For the format of the struc-
ture, see “Error Code Parameter” on page 10-11.

10-10 AS/400 System Programmer’s Communications Interface Guide

Close Virtual Terminal Path APl (QTVCLOVT)

The Close Virtual Terminal Path API, QTVCLOVT, closes one or all open virtual
terminal paths. To close all open virtual terminal paths, the handle must be set
to zero.

The following messages are issued by the QTVCLOVT API:

CPF87F2 E Virtual terminal handle &1 not valid
CPF87F7 E Parameter value &1 not valid
CPF87F8 E Unexpected internal system error occurred in program &1

The QTVCLOVT API has these parameters:

QTVCLOVT: Required Parameters

1 Virtual terminal handie l INPUT | CHAR(16)

The reference code for the open virtual terminal path, created with the Open
Virtual Terminal Path API, QTVOPNVT. If this parameter is set to zero, all
open virtual terminal paths are closed.

2 | Error code | o | CHAR()

The structure in which to return error information. For the format of the struc-
ture, see “Error Code Parameter.”

VT API Error Reporting

The following sections discuss the standard VT API error code parameters.

Error Code Parameter

Most OS/400 APIs include an error code parameter to return error codes and
exception data to the application. The error code parameter is a variable-length
structure containing the information associated with an error condition. One
field in that structure is an input field; it controls whether an exception is -
returned to the application or the error code structure is filled in with the excep-
tion information. When the input field is nonzero, the rest of the error code
structure is filled in with the output exception information associated with the
error. When the input field is zero, all other fields are ignored and an exception
is returned.

The structure of the error code parameter is as follows:

Chapter 10. Virtual Terminal APIs 10-11

Offset

Decimai

Hexadecimali

Use

Type

Fieid

0

0

INPUT

BINARY(4)

Bytes provided: The length
of the area provided for the
error code, in bytes. The
bytes provided must be 0, 8,
or more than 8:

0 If an error occurs, an
exception is returned
to the application to
indicate that the
requested function
failed.

28 If an error occurs, the
space is filled in with
the exception informa-
tion. No exception is
returned.

OUTPUT

BINARY(4)

Bytes available: The length
of the exception data avail-
able to return, in bytes. If
this is 0 (zero), no error was
detected.

OUTPUT

CHAR(7)

Exception ID: The identifier
for the message for the error
condition.

15

OUTPUT

CHAR(1)

Reserved: A 1-byte
reserved field.

16

10

OUTPUT

CHAR(*)

Exception data: A variable-
length character field con-
taining the insert data
associated with the excep-
tion ID.

10-12 As/400 System Programmer’s Communications Interface Guide

Chapter 11. VT APIs Run-Time Example

To help understand how VT APIs are used, the following example shows how the
0S/400, server program, client program, and work station device (display and
keyboard) interact when processing a system request.

This example starts with the server program waiting for a response from the
client program which is waiting for data from the user {(keyboard).

1. System Request processing starts when you press the appropriate System
Request key on the work station keyboard.

2. The client program informs the server program that the System Request key
has been pressed. The protocol used in this case is unique to the particular
implementation of these two programs.

3. The server program performs a call to QTVWRTVT for a write request. The
System Request key hit flag must be set for this write request. No data is
sent to the virtual terminal at this time.

4. The 0S/400 creates a data queue entry for informing the server program that
data is available to be read.

5. The server program removes the entry from the data queue by calling
QRCVDTAQ and then performs a call to QTVRDVT for a read request. The
Cancel Invite operation code is returned. No data is received from the
virtual terminal at this time.

T~ ant tha ~li r\r\ proqra '~ an
v PICVCIIL LT LIHCHIL prouygyiatlil mnuin o

server program informs the client program th tthe serve
longer receiving data from the client program.

3
-
A
3
]
=
]
@]
>
o3

,

o
=
(o]

«
=
o
3
—_—
>
(@]

The server program performs a call to QTVWRTVT for a write request. The
Operation Code parameter is set to Cancel Invite. No data is sent to the
virtual terminal at this time.

6. The OS/400 creates a data queue entry for informing the server program that
data is available to be read.

7. The server program removes the entry from the data queue by calling
QRCVDTAQ and then performs a call to QTVRDVT for a read request. A
Save Screen operation code is returned. No data is received from the virtual
terminal at this time.

The server program gets the current screen. This may require requesting
the current screen from the client program.

The server program performs a call to QTVWRTVT for a write request,
sending the current screen to the virtual terminal. The Operation Code
parameter must be set to Save Screen.

8. The OS/400 creates a data queue entry for informing the server program that
data is available to be read.

9. The server program removes the entry from the data queue by calling
QRCVDTAQ and then performs a call to QTVRDVT for a read request. A
Put/Get Operation Code is returned. The data read will be the actual System
Request menu.

The server program sends this data to the client program and waits for a
response.

© Copyright IBM Corp. 1991 111

10.

1.

12.

13.

14.
15.

16.

17.

The client program updates the display with the System Request menu and
waits for a response from the user. The resulting response is sent to the
server program.

The response is received from the client program, and the server program
performs a call to QTVWRTTV for a write request, sending the response to
the virtual terminal.

Note: What happens at this point depends on the response to the System
Request menu. Additional data may be received from and sent to the virtual
terminal. After the response is processed, the following steps occur.

The 08/400 creates a data queue entry for informing the server program that
data is available to be read.

The server program removes the entry from the data queue by calling
QRCVDTAQ and then performs a call to QTVRDVT for a read request. A Put
Operation Code is returned. The data read is the saved (current) screen that
was previously written by the server program to the virtual terminal.

The server program sends the saved screen to the client program but does
not wait for a response.

The client program updates the work station display with the saved screen.

The 08/400 creates a data queue entry for informing the server program that
data is available to be read.

The server program removes the entry from the data queue by calling
QRCVDTARQ. An Invite Operation Code is returned. Note that no data is
received from the virtual terminal at this time.

The client program is once again waiting for user data, and the server
program is waiting for data from the client program.

11-2 AS/400 System Programmer’s Communications Interface Guide

Part 3. Appendixes

© Copyright IBM Corp. 1991

AS/400 System Programmer’s Communications Interface Guide

Appendix A. Additional APIs

Depending on the nature of your application program, it may be necessary or
desirable to use one or more of the following APIs:

For more information on the user space, security, shared folders, and alerts

user space APIs
security APIs
shared folders APIs
alerts APIs

data queue APIs

APIs, see the System Programmer’s interface Reference. For more information

on the data queue APIs, see the CL Programmer’s Guide.

© Copyright IBM Corp. 1991

A-1

A-2 AS/400 System Programmer’s Communications Interface Guide

Appendix B. 5250 Data Stream and Keystroking Enhancements

This appendix describes enhancements to the AS/400 5250 data stream and key-
stroke processing support. These enhancements are currently supported by
some 5250 work station controllers that attach to the AS/400 system (for
example, AS/400 local work station controllers, 5394 remote work station control-
lers, and in some cases, AS/400 PC Support Work Station Function). The fol-
lowing information applies to the IBM 5250 Information Display System:
Functions Reference Manual (SA21-9247-6). Page numbers are given below,
along with the changes or enhancements that apply to information on those
pages.

Changes to the 5250 Functions Reference Manual

Resequencing (Page 2-66) »
Note: The controller will check for an endless loop situation and return LUSTAT
00000103 if found.

Orders (Page 2-136)
The Insert Cursor value should be X'13', not X'03"'.

Insert Cursor (IC) Order (Page 2-137)
Format: The Insert Cursor value, X'03"', should be deleted. The value X'13' is
correct.

Restrictions: Add the following restriction: “Row and column values must be
less than or equal to the current display screen size (either 24x80 or 27x132).”

Repeat to Address (RA) Order (Page 2-137)
Restrictions: Add the following restriction: "Row and column values must be
less than or equal to the current display screen size (either 24x80 or 27x132).”

Set Buffer Address (SBA) Order (Page 2-137 and 2-138)
Restrictions: Add the following restriction: “Row and column values must be
less than or equal to the current display screen size (either 24x80 or 27x132).”

Enhancements to 5250 Data Stream Commands and Orders

Input Commands

Read Immediate (Page 2-5): This command has been enhanced to include
support for transparent fields. If a transparent Field Control Word (FCW) is found
for an input field, the field data is not formatted (for example, nulls are not con-
verted to blanks).

Read Input Fields (Page 2-6): This command has been enhanced to include
support for transparent fields. If a transparent FCW is found for an input field,
the field data is not formatted (for example, nulls are not converted to blanks).

Read MDT Field (Page 2-7): This command has been enhanced to include
support for transparent fields. If a transparent FCW is found for an input field,
the field data is not formatted (for example, nulls are not converted to blanks,
and trailing nulls are stripped). '

© Copyright IBM Corp. 1991 B-1

Control Characters

Second Byte {(Page 2-40): Bit 1 was listed as reserved, but now specifies if the
cursor should be moved or not moved at the end of write-to-display processing.
If bit 1 is a 0, the cursor continues to be moved to the system IC address on a
lock-to-unlock keyboard transition. If bit 1 is a 1, the cursor is not moved.

Field Control Word (FCW)

Transparent Field FCW (Add to Page 2-67): A new FCW has been added to indi-
cate that an input field contains transparent data; that is, the input field contents
are sent from the display screen directly to the host at read time with no format-
ting. Therefore, an entry field can contain any values (X'00' to X'FF'). A trans-
parent field is indicated by a X'84xx' FCW (where xx can be any hex value).

Note: Unpredictable results will occur if a field is defined as both a signed-
numeric and transparent field.

Orders
Set Buffer Address (SBA) Order (Page 2-138):

Restrictions: The column size of zero is valid for a row 1/column 1 field.

Start of Field (SF) Order (Page 2-138):

Note: A row 1/column 1 field is defined by an SBA of row 1/column 0, followed
by an SF. For a row 1/column 1 input field, the first input-capable position is row
1/column 1. If the SF defines an input field, the screen attribute is not allowed to
be nondisplay. Writing of the screen attribute is suppressed for a row 1/column
1 field and the attribute discarded.

New 5250 Data Stream Commands and Orders

Query (Add to Page 2-8)

The Query command is a new input command and is used by the host to obtain
information on the capabilities of controller and the 5250 display station. When
the controller receives a Query command, the controlier sends a Query Reply to
the host.

The Query command must follow an Escape (X'04') and Write Structured Field
command (X'F3'). The Query command can be sent at any time, as long as the
associated device is powered-on and varied-on (LU-LU session is active). The
command must be the last command in the SNA chain and CD must be on.

B-2 As/400 System Programmer’s Communications Interface Guide

Note: The Work Station Function (WSF) expects this command to be the only
command within the data stream. The format of the Query command is as

follows:

Byte
0-1

2
3
4

Value Description
X'0005' Length of command

X'D9! Command Class

X'70! Command Type - Query

X'00! Flag Byte Bit 0 = B'0', Query Command

Bit 1-7 Reserved (set to zero)

When the Query command is received, the controller will send back a Query
Reply, defining the controller and the associated device capabilities.

The format of the Query Reply is as follows:

Byte

0-1
2

3-4

~N Oy O

8-9

10-12

13-28
29

30-33
34-36
37
38
39
40-43
44-45

46-48

Value Description

X'0000' Cursor Row and Column (set to zero)
X'88' Inbound Write Structured Field Aid
X'003A! Current Length of Query Reply

X'D9' Command Class

X'70! Command Type - Query

X'8o!' Flag Byte Bit 0 = B'1', Query Reply

Bit 1-7 - Reserved (set to zero)

Controller Hardware Class

X'eoe1! Local Twinax Controller

X'0061! Local ASCII Controller

X'e101!' SDLC/X.21/X.25 Twinax Controller (5394 emulating a 5294)

X'0103' SDLC/X.21/X.25 Twinax Controller (5394)

X'0200' PC DOS non-DBCS WSF

X'0300' 0S/2* non-DBCS WSF

X'0400' PC DOS DBCS WSF

X'0500" 0S/2 DBCS WSF

X'0600" Other WSF or any other 5250 controller emulator
Controller Code Level

X'010300' For example, Version 1 Rel 3.0

X'ee! Reserved (set to zero)
Device Type
X'ol1! 5250 Display or PC emulating a 5250 Display
C'ceccc! Device Type (e.g. "3180" for "3180" Mod 2)
C'cec! Device Model (e.g. 002 for "3180" Mod 2)
X'xx! Keyboard ID
X'xx' Extended Keyboard ID
Xteo!' Reserved
X XXXXXXXX ' Display Serial Number if From Display
Maximum number of input fields this display
X'e1e0!' Typically = 256 input fields
X'eo! Reserved (set to zero)

Appendix B. 5250 Data Stream and Keystroking Enhancements B-3

Byte Value Description

49 XEXXXXXXXx ' Controller and Display Capability
Bit 0-1: B'@0' - No Row 1/Col 1 support
B'01' - Row 1/Col 1 support (nondisplay
attribute not allowed at Row 1/Col 0)
Other values = reserved
Bit 2: B'@' - No Read MDT Alternate Command Support
B'1' - Read MDT Alternate Command Support
Bit 3: B'@' - No PA1/PA2 support
B'1'" - Display and controller have PAl/PA2 support
Bit 4: B'0' - No PA3 support
B'l'" - Display and controller have PA3 support
Bit 5: B'0@' - No Cursor Select support
B'1' - Display and controller
have Cursor Select support
Bit 6: B'@' - No Move Cursor Order support
B'1l' - Display and controller have Move Cursor
Order support
Bit 7: B'@' - No Read MDT Immediate ATt Command Support
B'l" - Read MDT Immediate A1t Command Support
50 B'xxxxxxxx' Controller and Display Capability
Bit 0-3: B'00O1' - 24x80 screen size
B'0011' - Capable of 24x80 and 27x132 screen sizes
Other values = reserved

Bit 4: B'O' - No Light Pen Support
B'1! - Light Pen Support

Bit 5: B'O! - No Mag Stripe Reader Support
B'1! - Mag Stripe Reader Support

Bit 6-7: B'00O' - Mono display
B'O1' - 5292/3179 style color, including color PCs
Other values = reserved

51 X'oo! Reserved

Bit 0-4: B'00000' - Reserved

Bit 5: B'O' - No extended primary attribute support
B'1! - Both display and controller have

extended primary attribute
support (WEA and EA orders)

Bit 6-7: B'00' - Reserved
52 B'XXXXXXXX" Controller and Display Capability
Bit ©-2: B'600' - No DBCS capability
B'001' - Presentation screen DBCS capability only

Other Values = Reserved
Bit 3-7: B'00000' - Reserved

Byte Value Description
53 B'Xxxxxxxxx' Controller and Display Capability
Bit 0-2: B'000' - No Graphics capability
B'e01l' - 5292-2 style graphics

Other Values = Reserved
‘Bit 3-7: B'0000OO' - Reserved
54-60 X'00' Reserved (set to zero)

AS/400 System Programmer’s Communications Interface Guide

Move Cursor (MC) Order (Add to Page 2-137)

Function: The move cursor (MC) order moves the cursor to the location speci-
fied by the two bytes following the order. Byte 1 gives the row address and byte
2 gives the column address. The MC order is useful when the cursor is to be
moved without affecting the system IC address. The MC order is unaffected by
the WTD control character values including the leave-cursor-flag (CC1 bit 1).

Note: If more than one MC or IC is found in the data stream, the cursor will
move 1o the address specified in the last MC or IC.

Restrictions: A parameter error will be posted when:
* There are fewer than two bytes following the order.

* The row address is 0 or greater than the number of rows on the display
screen (24 or 27, depending on screen size).

¢ The column address is 0 or greater than the number of columns on the
display screen (80 or 132, depending on screen size).

Format:
Move Cursor Order Byte 1 Byte 2

X'14! Row Address Column Address

Results: The address specified by the MC order is used to move the cursor
when the WTD is completed.

Write Extended Attribute (WEA) Order (Add to Page 2-137)
Function: The write extended attribute (WEA) order writes one extended attri-
bute to the current display address of displays that support extended attributes.
Extended attributes are written to the display-extended-attribute buffer and do
not require a screen position. Two parameter bytes follow the order. Byte 1
defines the attribute type (only extended primary attributes are supported at this

time). Byte 2 defines the attribute.

Restrictions: A parameter error will be posted when:

* There are fewer then two bytes following the order.
e The attribute type is not valid

* The attribute type is not supported on this display
e The attribute is not valid

Appendix B. 5250 Data Stream and Keystroking Enhancements B-5

Format:
WEA Order Byte 1 Byte 2

X'12! Attribute Type Attribute

The Attribute Type for extended primary attributes js X'0O1'

Valid extended primary attributes are X'00'
and between X'80' and
X'OF' as defined below:

Bit Attribute change flag if set
Reserved

= Reserved

Column Separator if set

= Blink if set

Underscore if set

High Intensity if set

Reverse Image if set

NO O W O
|

Results: The attribute is written to the display extended attribute buffer and the
current display address is not modified. The attributing effect begins at the posi-
tion of the extended attribute and continues until the next nonzero extended attri-
bute. Extended attributes take precedence over display screen attributes, except
when the normal display extended attribute is used (X'80'). The Clear Unit and
Clear Unit Alternate commands erase the entire display screen including
extended attributes. The erase-to-address order can be used to erase selected
extended attributes. The propagate attribute (X'00') can be written with a WEA,
which can be used to erase an extended attribute.

Erase-to-Address (EA) Order (Add to Page 2-137)

Function: The erase-to-address order (EA) is similar to the repeat-to-address
order. The EA order erases the display screen and extended attributes from the
current display address up to the row and column values specified. A minimum
of 4 bytes follow the EA order. Byte 1 defines the ending row. Byte 2 defines the
ending column. Byte 3 defines the length of remaining data (list of attribute
planes to be cleared).

Restrictions: A parameter error will be posted when:

¢ The row or column values are not valid for the current display screen size
(either 24x80 or 27x132)

* The row and column value is less than the current display address
e There are fewer than four bytes following the order

e The attribute type is not valid

¢ The attribute type is not supported on this display

e The length is not valid

B-6 AS/400 System Programmer’s Communications Interface Guide

Format:
EA Order Byte 1 Byte 2 Byte 3 Bytes 4 -

X'03! Row Column Length List of Attribute Types
The valid Attribute Types are:

X'00' Display screen (not an extended attribute type, but can
can be cleared by EA)

X'01' Extended Primary Attributes

X'FF' Display screen and all supported extended attribute types

Results: The display screen and extended attributes are cleared (written to
X’00") and the current display address is set to the address specified in the EA
plus 1.

Transparent Data (TD) Order (Add to Page 2-137)

Function: The transparent data order (TD) is followed by two length bytes and
transparent data. The transparent data is written to the display screen at the
current display address; any values (X'00' to X'FF') are allowed in the trans-
parent data. All length values are valid as long as the end of the display screen
is not overwritten.

Restrictions: A parameter error will be posted when:
e There are fewer than two bytes following the order

* There are fewer bytes in the data stream then specified in the length field

¢ Attempting to write beyond the end of the display screen

Format:
Transparent Data Order Bytes 1 and 2 Bytes 3 and beyond
Xtie! Length of transparent Transparent data

data (not counting
Tength bytes)

Results: The transparent data is written to the display screen and the length of
the transparent data is added to the current display address.

New 5250 Keystroke Processing

New Aid Code Generating Keys
PA1 (Add to Pages 2-2 and 2-120): The PA1 aid-generating key has an aid code
of X'6C' and does not return input field data.

PA2 (Add to Pages 2-2 and 2-120): The PA2 aid-generating key has an aid code
of X'BE' and does not return input field data.

PA3 (Add to Pages 2-2 and 2-120): The PA3 aid-generating key has an aid code
of X'6B' and does not return input field data.

Appendix B. 5250 Data Stream and Keystroking Enhancements B-7

New Alphanumeric Key

Field Mark Key (Add to Pages 2-69 and 2-118): The Field Mark key is valid in an
input field if the Dup enable/Field Mark enable bit is on in the FFW (byte 1, bit 3).
The Field Mark character (X'1E') is then processed like other data characters. If
the Field Mark key is pressed in an input field that is not Dup enabled or Field
Mark enabled, operator error 0019 is posted.

New Special Keys

Erase EOF (Add to Page 2-125): The Erase End of Field (EOF) key fills all char-
acter positions from and including the current cursor position through the end of
the field with nulls. The field MDT is also set. The cursor remains at the current
position.

Cursor Select (Add to Page 2-126): The Cursor-Select key allows a user to
select an input field from the keyboard as if selecting the input field with a
Selector Light Pen. The Cursor-Select key is valid only in input fields with a
Selector Light Pen FCW (X'8102' or X'8103') otherwise, operator error 0037 is
posted. If Cursor Select is keyed in field-exit-required state, operator error 0036
is posted.

B-8 As/400 System Programmer’s Communications Interface Guide

Bibliography

If you want more information on a topic while you are
using this guide, see the Publications Guide,
GC41-9678 for related AS/400 publications.

The following publications provide additional informa-
tion about topics described or referred to in this
guide. The manuals are listed with their full title and
order number. When these manuals are referred to in
text, a shortened version of the title is used.

AS/400 Manuals

Communications: Local Area Network Guide,
SC41-0004

The Local Area Network Guide provides informa-
tion about using an AS/400 system in a token-ring
network, Ethernet network, or in a bridged envi-
ronment.

Communications: Management Guide, SC41-0024

The Communications Management Guide provides
information about working with communications
status, errors, performance, line speed, and
storage requirements.

Communications: Operating System/400* Commu-

The 0S/400* Communications Configuration
Reference provides general communications con-
figuration information about lines, controllers,
devices, modes, class-of-service, configuration
lists, network interfaces, and connection lists.

Communications: X.25 Network Guide, SC41-0005

The X.25 Network Guide provides information
about using an AS/400 system in an X.25 packet-
switched network.

Data Description Specifications Reference,
SC41-9620

The DDS Reference provides detailed descriptions
of the entries and keywords needed to describe
database files (both logical and physical) and
certain device files (for displays, printers, and
ICF) external to the user’s programs.

Database Guide, SC41-9659

The Database Guide provides information about
creating and managing database files.

Device Configuration Guide, SC41-8106

The Device Configuration Guide provides informa-
tion on how to configure hardware initially and
how to change that configuration. Also included
is a description of the different keyboard language
types. Keyboard language types are specified
when using the TELNET function.

© Copyright IBM Corp. 1991

Guide to Programming Application and Help
Displays, SC41-0011

The Guide to Programming Displays provides
information about creating and working with
display files. It also provides information about
developing online information.

The method by which AS/400 users can send a
5250 data stream to a display device (user-
defined data streams) is described in this manual.

I1BM 8209 LAN Bridge Customer Information,
SA21-9994

Describes how to set up and use the 8209 Local
Area Network Bridge.

Languages: Pascal Reference, SC09-1210

The Pascal Reference provides information about
using the AS/400 Pascal programming language.
It includes information you can refer to while
using AS/400 Pascal, such as a detailed
description of the program structure, declarations,
data types, routines, variables, and statements in
Pascal.

Languages: Pascal User’'s Guide, SC09-1209

The Pascal User’s Guide provides inf
about how to use the AS/400 Pascal compiler.
The manual explains how to enter, compile, run,
and debug AS/400 Pascal programs. It also
describes how to use input and output (I/0) func-

tion and storage.

nrmation
ormation

Languages: Systems Application Architecture”
C/400* User’s Guide, SC09-1347

The C/400* User’s Guide provides information
needed to write application programs or develop
programs using the C/400 language.

Languages: Systems Application Architecture*
AD/Cycle* COBOL/400* User’s Guide, SC09-1383

The COBOL/400* User’s Guide provides informa-
tion needed to design, write, test, and maintain
COBOL/400 programs on the 0S/400 system.

Languages: Systems Application Architecture™
AD/Cycle* RPG/400* Reference, SC09-1349

The RPG/400* Reference provides information
needed to write programs for the AS/400 system
using the RPG/400 programming language. This
manual describes, position by position, the valid
entries for all RPG specification forms, and pro-
vides a detailed description of all the operation
codes. This manual also contains information on
the RPG logic cycle, arrays and tables, editing
functions, and indicators.

Languages: Systems Application Architecture™
AD/Cycle* RPG/400* User’s Guide, SC09-1348

H-1

The RPG/400* User’s Guide provides information
needed to write, test, and maintain RPG/400 pro-
grams on the AS/400 system. The manual pro-
vides information on data organizations, data
formats, file processing, multiple file processing,
automatic report function, RPG command state-
ments, testing and debugging functions, applica-
tion design techniques, problem analysis, and
compiler service information. The differences
between the System/38 RPG lll, System/38 com-
patible RPG, and RPG/400 are identified.

* National Language Support Planning Guide,
GC41-9877

The National Language Support Planning Guide
provides information needed to evaluate, plan,

and use the AS/400 national language support

(NLS) and multilingual capabilities.

* New User’s Guide, SC41-8211

The New User’s Guide provides information about

how to sign on and off; send and receive mes-
sages, respond to keyboard error messages; use

function keys; and control and manage jobs. Also

included is a description of keyboard differences.

* Programming: Control Language Programmer’s
Guide, SC41-8077

The CL Programmer’s Guide provides a wide-

ranging discussion of AS/400 programming topics,

including the following:

— A general discussion of objects and libraries

— Control language (CL) programming, control-
ling flow and communicating between pro-
grams, working with objects in CL programs,
and creating CL programs

— Predefined and impromptu messages and
message handling

— How to define and create commands and
menus

— Application testing, including debug mode,
breakpoints, traces, and display functions

e Programming: Control Language Reference,
SC41-0030

The CL Reference manual provides a description
of the AS/400 control language (CL) and its com-
mands. Each command description includes a
syntax diagram, parameters, default values,
keywords, and an example.

* Programming: Reference Summary, SX41-0028

The Programming Reference Summary provides
quick reference information when working with
the AS/400 system. This manual contains sum-
maries of information such as system values and
0S/400 data description specifications (DDS)
keywords.

If you want to create your own translation tables,
this manual discusses creating and editing tables
for ASCII line mode.

* System Concepts, GC41-9802

H-2 As/400 System Programmer’s Communications Interface Guide

~
¥

The System Concepts provides a general under-
standing of the concepts related to the overali
design and use of the AS/400 system and its
operating system. This manual includes general
information about AS/400 features such as user
interface, object management, work management,
system management, data management, data-
base, communications, environments,
OfficeVision/400 and PC Support, and system
architecture.

System Operator’s Guide, SC41-8082

The Operator’s Guide provides information on how
to respond to error messages and process and
manage jobs on the system. Processing jobs
includes working with spooled files and finding
your printer output.

System Programmer’s Interface Reference,
SC41-8223

The System Programmer’s Interface Reference
provides information on how to create, use, and
delete objects that help manage system perfor-
mance, use spooling efficiently, and maintain
database files efficiently. This manual also
includes information on creating and maintaining
the programs for system objects and retrieving
0S§/400 information by working with objects, data-
base files, jobs, and spooling.

....... HP P |t .

ommunications Related Manualis

The following manuals are not specific to the AS/400
system, but do contain helpful communications infor-
mation.

American National Standards Institute/Institute of
Electrical and Electronics Engineers 802.2,1985 -
Logical Link Control, International Organization
for Standardization/Draft International Standard
8802/2.

American National Standards Institute/Institute of
Electrical and Electronics Engineers 802.3,1985 -
Carrier Sense Multiple Access with Collision
Detection, International Organization for
Standardization/Draft International Standard
8802/3.

American National Standards Institute/Institute of
Electrical and Electronics Engineers 802.3a, b, d,
c, 1988 -Supplements to Carrier Sense Multiple
Access with Collision Detection American National
Standards Institute/Institute of Electrical and Elec-
tronics Engineers Standard 802.3, 1985.

American National Standards Institute/Institute of
Electrical and Electronics Engineers 802.5,1985 -
Token Passing Ring, International Organization for
Standardization/Draft International Standard
8802/5.

The International Telegraph and Telephone
Consultative Committee, Red Book, Volume VIII -

Facscicle V1.3, Data Communications Networks
Interfaces, Recommendations X.20 - X.32, Vliith
Plenary Assembly, Malaga-Torremolinos, October
8-19, 1984.

Token-Ring Network Problem Determination
Guide Kit, SC30-3374

e Token-Ring Network Architecture Reference,
SC30-3374

e .3270 Information Display System: 3274 Control
Unit Description and Programmer’s Guide,
GA23-0061

e 5250 Functions Reference Manual, SA21-9247

Bibliography

H-3

H-4 As/400 System Programmer’s Communications Interface Guide

Index

A
APl 11
APPC
relationship to user-defined communications 1-4
Application Program Interface 1-1
QTVOPNVT API parameters 10-1
QTVRDVT API parameters 10-4
virtual terminal
open 10-1
read 10-4
run-time example 11-1

C

call accept 3-7
call connected packet 2-49
call request packet 2-12
callable routines 1-2
clear indication packet 4-1
clear request packet 4-1
Client Program 7-1
close connection request 3-5
close virtual terminal 10-11
communications handle 1-3
communications handle, 5-1
communications handle, timer handle
See handle
connection 1-3, 3-5
connection failure indication 3-8
connection identifier 1-3
connection-oriented 1-3, 3-6
connectionless 1-3, 1-6, 3-32
creating
virtual controllers 8-3
virtual devices 8-3

D

data packet 2-24, 3-12

data queues for use with VT APls 9-1

datagram 1-6

disable 1-3, 2-8

display connection status, inbound routing
See filter

E
enable 1-3, 2-3
error reporting for VT APl 10-11
example
VT APIs run-time 11-1

© Copyright IBM Corp. 1991

F
filter 1-3, 2-10, 3-10
filtering
LAN based 1-7
X.25 based 1-7

H

handle 2-1

|

inbound routing 1-7, 2-10, 3-6
incoming call indication 3-25
incoming call packet 2-51, 4-1
input buffer 1-2

interrupt packet 2-24, 3-31, 5-15

L

LAN bridge 3-35

LAN filter format 2-10

limit security officer system value, setting 8-2
link 1-2, 1-3, 2.3, 2-8

o

open connection request 3-5

open virtual terminal 10-1

operation 2-17, 3-3, 3-5

operation codes for read request 10-6
output buffer 1-2

P

PCEP 1-3

PCEP ID 1-3

printer output H-2

printing spooled files H-2

provider connection end point 1-3, 2-17, 3-9
See also PCEP
user connection end point 3-9

QAUTOVRT system value for virtual terminal
APls 8-1
QLMTSECOFR system value for virtual terminal
APIs 8-2
QTVCLOVT API
parameters 10-11
QTVOPNVT API
parameters 10-1
work station types 10-3

QTVRDVT API
parameters 10-4

QTVSNDRQ API
parameters 10-10

QTVWRTVT API
parameters 10-8

R

read request operation codes 10-6
reset packet 2-29, 2-31, 5-14

RNR packet 3-7

RR packet 3-7

S

send request, virtual terminal 10-10
Server Program 7-1
spooled files H-2
system value
QAUTOVRT 8-1
QLMTSECOFR 8-2

T

test frame 1-7
timer handle 2-62

U

UCEP 1-3

Ul frame 1-6, 3-32
user connection end point 1-3, 2-17
See also UCEP
user space 1-2
user-defined communications 1-1
differences between standard AS/400 communica-

tions configuration 1-5

\'/

virtual terminal
close parameters 10-11
description 7-1
open parameters 10-1
read parameters 10-4
send request parameters 10-10
write parameters 10-8

virtual terminal APIs
creating programs 8-4
introduction 7-1
run-time example 11-1
security considerations 8-2
set number of virtual terminals automatically 8-1
work station types 9-1

VT API error reporting 10-11

w

woik station types for virtual terminal APls
working with spooled files H-2
write to virtual terminal 10-8

X

XID frame 1-7
X.25 filter format 2-10

X-2 AS/400 System Programmer’s Communications Interface Guide

$-1

Readers’ Comments

Application System/400™

System Programmer’s Communications
Interface Guide

Version 2

Publication No. SC41-0027-00

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make sug-
gestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com-
ments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Readers” Comments
SC41-0027-00

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN D 245
BM CORPORATION
3605 HWY 52 N

ROCHESTER MN 55901-7899

L

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

I

Fold and Tape

SC41-0027-00

Please do not staple

Fold and Tape

| Cu
1 Alc

Readers’ Comments

Application System/400™

System Programmer’s Communications
Interface Guide

Version 2

Publication No. SC41-0027-00

Use this form to tell us what you think about this manual. If you have found errors in it, or if you want
to express your opinion about it (such as organization, subject matter, appearance) or make sug-
gestions for improvement, this is the form to use.

To request additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized remarketer.
This form is provided for comments about the information in this manual and the way it is presented.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your com-
ments in any way it believes appropriate without incurring any obligation to you.

Be sure to print your name and address below if you would like a reply.

Name Address

Company or Organization

Phone No.

Readers” Comments ; cu

LAl
SC41-0027-00 § e
Fold and Tape Please do not staple Fold and Tape
NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES
BUSINESS REPLY MAIL ——
[o]
o]
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK T ——
R R
POSTAGE WILL BE PAID BY ADDRESSEE N —
|
ATTN DEPT 245 R |
IBM CORPORATION §
3605 HWY 52 N :
ROCHESTER MN 55901-7899 i
IIIIIIIIIIIIIIIl"IIIIII”IIIIIIlIIIIIIIIIIIIII'III”
Fold and Tape Please do not staple Fold and Tape
Cut

SC41-0027-00 i Alo

Printed in Denmark by
Aalborg Stiftsbogtrykkeri A/S

LT

	03906599 =================.tif
	03906600.tif
	03906601.tif
	03906602.tif
	03906603.tif
	03906604.tif
	03906605.tif
	03906606.tif
	03906607.tif
	03906608.tif
	03906609.tif
	03906610.tif
	03906611.tif
	03906612.tif
	03906613.tif
	03906614.tif
	03906615.tif
	03906616.tif
	03906617.tif
	03906618.tif
	03906619.tif
	03906620.tif
	03906621.tif
	03906622.tif
	03906623.tif
	03906624.tif
	03906625.tif
	03906626.tif
	03906627.tif
	03906628.tif
	03906629.tif
	03906630.tif
	03906631.tif
	03906632.tif
	03906633.tif
	03906634.tif
	03906635.tif
	03906636.tif
	03906637.tif
	03906638.tif
	03906639.tif
	03906640.tif
	03906641.tif
	03906642.tif
	03906643.tif
	03906644.tif
	03906645.tif
	03906646.tif
	03906647.tif
	03906648.tif
	03906649.tif
	03906650.tif
	03906651.tif
	03906652.tif
	03906653.tif
	03906654.tif
	03906655.tif
	03906656.tif
	03906657.tif
	03906658.tif
	03906659.tif
	03906660.tif
	03906661.tif
	03906662.tif
	03906663.tif
	03906664.tif
	03906665.tif
	03906666.tif
	03906667.tif
	03906668.tif
	03906669.tif
	03906670.tif
	03906671.tif
	03906672.tif
	03906673.tif
	03906674.tif
	03906675.tif
	03906676.tif
	03906677.tif
	03906678.tif
	03906679.tif
	03906680.tif
	03906681.tif
	03906682.tif
	03906683.tif
	03906684.tif
	03906685.tif
	03906686.tif
	03906687.tif
	03906688.tif
	03906689.tif
	03906690.tif
	03906691.tif
	03906692.tif
	03906693.tif
	03906694.tif
	03906695.tif
	03906696.tif
	03906697.tif
	03906698.tif
	03906699.tif
	03906700.tif
	03906701.tif
	03906702.tif
	03906703.tif
	03906704.tif
	03906705.tif
	03906706.tif
	03906707.tif
	03906708.tif
	03906709.tif
	03906710.tif
	03906711.tif
	03906712.tif
	03906713.tif
	03906714.tif
	03906715.tif
	03906716.tif
	03906717.tif
	03906718.tif
	03906719.tif
	03906720.tif
	03906721.tif
	03906722.tif
	03906723.tif
	03906724.tif
	03906725.tif
	03906726.tif
	03906727.tif
	03906728.tif
	03906729.tif
	03906730.tif
	03906731.tif
	03906732.tif
	03906733.tif
	03906734.tif
	03906735.tif
	03906736.tif
	03906737.tif
	03906738.tif
	03906739.tif
	03906740.tif
	03906741.tif
	03906742.tif
	03906743.tif
	03906744.tif
	03906745.tif
	03906746.tif
	03906747.tif
	03906748.tif
	03906749.tif
	03906750.tif
	03906751.tif
	03906752.tif
	03906753.tif
	03906754.tif
	03906755.tif
	03906756.tif
	03906757.tif
	03906758.tif
	03906759.tif
	03906760.tif
	03906761.tif
	03906762.tif
	03906763.tif
	03906764.tif
	03906765.tif
	03906766.tif
	03906767.tif
	03906768.tif
	03906769.tif
	03906770.tif
	03906771.tif
	03906772.tif
	03906773.tif
	03906774.tif
	03906775.tif
	03906776.tif
	03906777.tif
	03906778.tif
	03906779.tif
	03906780.tif
	03906781.tif
	03906782.tif
	03906783.tif
	03906784.tif
	03906785.tif
	03906786.tif
	03906787.tif
	03906788.tif
	03906789.tif
	03906790.tif
	03906791.tif
	03906792.tif
	03906793.tif
	03906794.tif
	03906795.tif
	03906796.tif
	03906797.tif
	03906798.tif
	03906799.tif
	03906800.tif
	03906801.tif
	03906802.tif
	03906803.tif
	03906804.tif
	03906805.tif
	03906806.tif
	03906807.tif
	03906808.tif
	03906809.tif
	03906810.tif
	03906811.tif
	03906812.tif
	03906813.tif
	03906814.tif
	03906815.tif
	03906816.tif
	03906817.tif
	03906818.tif
	03906819.tif
	03906820.tif
	03906821.tif
	03906822.tif
	03906823.tif
	03906824.tif
	03906825.tif
	03906826.tif
	03906827.tif
	03906828.tif
	03906829.tif
	03906830.tif
	03906831.tif
	03906832.tif
	03906833.tif
	03906834.tif
	03906835.tif
	03906836.tif
	03906837.tif
	03906838.tif
	03906839.tif
	03906840.tif
	03906841.tif
	03906842.tif

